Scale-Invariant Specifications for Human-Swarm Systems
We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Meyer, Joel Prabhakar, Ahalya Pinosky, Allison Abraham, Ian Taylor, Annalisa Schlafly, Millicent Popovic, Katarina Diniz, Giovani Teich, Brendan Simidchieva, Borislava Clark, Shane Murphey, Todd |
description | We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747736997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747736997</sourcerecordid><originalsourceid>FETCH-proquest_journals_27477369973</originalsourceid><addsrcrecordid>eNqNykELwiAYgGEJgo3afxA6C6bbbOco1tnu42MoOKYuP1f07-vQD-j0Hp53Q0oh5ZGdaiEKUiFOnHPRKtE0siStHmE27BaekByETPViRmfdCNnFgNTGRPvVQ2D6BclT_cZsPO7J1sKMpvp1Rw7Xy_3csyXFx2owD1NcU_jSIFStlGy7Tsn_rg_a5TWZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747736997</pqid></control><display><type>article</type><title>Scale-Invariant Specifications for Human-Swarm Systems</title><source>Free E- Journals</source><creator>Meyer, Joel ; Prabhakar, Ahalya ; Pinosky, Allison ; Abraham, Ian ; Taylor, Annalisa ; Schlafly, Millicent ; Popovic, Katarina ; Diniz, Giovani ; Teich, Brendan ; Simidchieva, Borislava ; Clark, Shane ; Murphey, Todd</creator><creatorcontrib>Meyer, Joel ; Prabhakar, Ahalya ; Pinosky, Allison ; Abraham, Ian ; Taylor, Annalisa ; Schlafly, Millicent ; Popovic, Katarina ; Diniz, Giovani ; Teich, Brendan ; Simidchieva, Borislava ; Clark, Shane ; Murphey, Todd</creatorcontrib><description>We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Control methods ; Dynamic response ; Ergodic processes ; Invariance ; Invariants ; Scale invariance ; Spatial distribution ; Specifications</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Meyer, Joel</creatorcontrib><creatorcontrib>Prabhakar, Ahalya</creatorcontrib><creatorcontrib>Pinosky, Allison</creatorcontrib><creatorcontrib>Abraham, Ian</creatorcontrib><creatorcontrib>Taylor, Annalisa</creatorcontrib><creatorcontrib>Schlafly, Millicent</creatorcontrib><creatorcontrib>Popovic, Katarina</creatorcontrib><creatorcontrib>Diniz, Giovani</creatorcontrib><creatorcontrib>Teich, Brendan</creatorcontrib><creatorcontrib>Simidchieva, Borislava</creatorcontrib><creatorcontrib>Clark, Shane</creatorcontrib><creatorcontrib>Murphey, Todd</creatorcontrib><title>Scale-Invariant Specifications for Human-Swarm Systems</title><title>arXiv.org</title><description>We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.</description><subject>Control methods</subject><subject>Dynamic response</subject><subject>Ergodic processes</subject><subject>Invariance</subject><subject>Invariants</subject><subject>Scale invariance</subject><subject>Spatial distribution</subject><subject>Specifications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELwiAYgGEJgo3afxA6C6bbbOco1tnu42MoOKYuP1f07-vQD-j0Hp53Q0oh5ZGdaiEKUiFOnHPRKtE0siStHmE27BaekByETPViRmfdCNnFgNTGRPvVQ2D6BclT_cZsPO7J1sKMpvp1Rw7Xy_3csyXFx2owD1NcU_jSIFStlGy7Tsn_rg_a5TWZ</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Meyer, Joel</creator><creator>Prabhakar, Ahalya</creator><creator>Pinosky, Allison</creator><creator>Abraham, Ian</creator><creator>Taylor, Annalisa</creator><creator>Schlafly, Millicent</creator><creator>Popovic, Katarina</creator><creator>Diniz, Giovani</creator><creator>Teich, Brendan</creator><creator>Simidchieva, Borislava</creator><creator>Clark, Shane</creator><creator>Murphey, Todd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221212</creationdate><title>Scale-Invariant Specifications for Human-Swarm Systems</title><author>Meyer, Joel ; Prabhakar, Ahalya ; Pinosky, Allison ; Abraham, Ian ; Taylor, Annalisa ; Schlafly, Millicent ; Popovic, Katarina ; Diniz, Giovani ; Teich, Brendan ; Simidchieva, Borislava ; Clark, Shane ; Murphey, Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27477369973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control methods</topic><topic>Dynamic response</topic><topic>Ergodic processes</topic><topic>Invariance</topic><topic>Invariants</topic><topic>Scale invariance</topic><topic>Spatial distribution</topic><topic>Specifications</topic><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Joel</creatorcontrib><creatorcontrib>Prabhakar, Ahalya</creatorcontrib><creatorcontrib>Pinosky, Allison</creatorcontrib><creatorcontrib>Abraham, Ian</creatorcontrib><creatorcontrib>Taylor, Annalisa</creatorcontrib><creatorcontrib>Schlafly, Millicent</creatorcontrib><creatorcontrib>Popovic, Katarina</creatorcontrib><creatorcontrib>Diniz, Giovani</creatorcontrib><creatorcontrib>Teich, Brendan</creatorcontrib><creatorcontrib>Simidchieva, Borislava</creatorcontrib><creatorcontrib>Clark, Shane</creatorcontrib><creatorcontrib>Murphey, Todd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Joel</au><au>Prabhakar, Ahalya</au><au>Pinosky, Allison</au><au>Abraham, Ian</au><au>Taylor, Annalisa</au><au>Schlafly, Millicent</au><au>Popovic, Katarina</au><au>Diniz, Giovani</au><au>Teich, Brendan</au><au>Simidchieva, Borislava</au><au>Clark, Shane</au><au>Murphey, Todd</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scale-Invariant Specifications for Human-Swarm Systems</atitle><jtitle>arXiv.org</jtitle><date>2022-12-12</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2747736997 |
source | Free E- Journals |
subjects | Control methods Dynamic response Ergodic processes Invariance Invariants Scale invariance Spatial distribution Specifications |
title | Scale-Invariant Specifications for Human-Swarm Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scale-Invariant%20Specifications%20for%20Human-Swarm%20Systems&rft.jtitle=arXiv.org&rft.au=Meyer,%20Joel&rft.date=2022-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747736997%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747736997&rft_id=info:pmid/&rfr_iscdi=true |