Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image Super-Resolution
The learning-based methods for single image super- resolution (SISR) can reconstruct realistic details, but they suffer severe performance degradation for low-light images because of their ignorance of negative effects of illumination, and even produce overexposure for unevenly illuminated images. I...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-12, Vol.32 (12), p.8436-8449 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8449 |
---|---|
container_issue | 12 |
container_start_page | 8436 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Cheng, Deqiang Chen, Liangliang Lv, Chen Guo, Lin Kou, Qiqi |
description | The learning-based methods for single image super- resolution (SISR) can reconstruct realistic details, but they suffer severe performance degradation for low-light images because of their ignorance of negative effects of illumination, and even produce overexposure for unevenly illuminated images. In this paper, we pioneer an anti-illumination approach toward SISR named Light-guided and Cross-fusion U-Net (LCUN), which can simultaneously improve the texture details and lighting of low-resolution images. In our design, we develop a U-Net for SISR (SRU) to reconstruct super- resolution (SR) images from coarse to fine, effectively suppressing noise and absorbing illuminance information. In particular, the proposed Intensity Estimation Unit (IEU) generates the light intensity map and innovatively guides SRU to adaptively brighten inconsistent illumination. Further, aiming at efficiently utilizing key features and avoiding light interference, an Advanced Fusion Block (AFB) is developed to cross-fuse low-resolution features, reconstructed features and illuminance features in pairs. Moreover, SRU introduces a gate mechanism to dynamically adjust its composition, overcoming the limitations of fixed-scale SR. LCUN is compared with the retrained SISR methods and the combined SISR methods on low-light and uneven-light images. Extensive experiments demonstrate that LCUN advances the state-of-the-arts SISR methods in terms of objective metrics and visual effects, and it can reconstruct relatively clear textures and cope with complex lighting. |
doi_str_mv | 10.1109/TCSVT.2022.3194169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2747611662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9841591</ieee_id><sourcerecordid>2747611662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-dc00964a8ab7b2914bcd040361ce0ee5ec73c9e6342e365c60312d05461335503</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxRujiYh-Ab008bw4s__aPRIiSELUCHjdlO2AJaXF3fbgt7cV4mkmM-_Ny_yi6B5hhAjmaTVZfq5GHDgfCTQStbmIBqhUyjgHddn1oJClHNV1dBPCHgBlKpNB9L4odl8Nm7VFTnmcVXk88XUIbNqGoq7iNXulJt7WPh5XTcHmZdkeiipr-t38kO0oXrZH8uyDQl22_fg2utpmZaC7cx1G6-nzavLCFm-z-WS8YI5z1bDcARgtszTbJBtuUG5cDhKERkdApMglwhnSQnISWjkNAnkOSmoUQikQw-jxdPfo6--WQmP3deurLtLyRCYaUWveqfhJ5fqvPG3t0ReHzP9YBNuTs3_kbE_Onsl1poeTqSCif4NJJSqD4hfSumiZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747611662</pqid></control><display><type>article</type><title>Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Deqiang ; Chen, Liangliang ; Lv, Chen ; Guo, Lin ; Kou, Qiqi</creator><creatorcontrib>Cheng, Deqiang ; Chen, Liangliang ; Lv, Chen ; Guo, Lin ; Kou, Qiqi</creatorcontrib><description>The learning-based methods for single image super- resolution (SISR) can reconstruct realistic details, but they suffer severe performance degradation for low-light images because of their ignorance of negative effects of illumination, and even produce overexposure for unevenly illuminated images. In this paper, we pioneer an anti-illumination approach toward SISR named Light-guided and Cross-fusion U-Net (LCUN), which can simultaneously improve the texture details and lighting of low-resolution images. In our design, we develop a U-Net for SISR (SRU) to reconstruct super- resolution (SR) images from coarse to fine, effectively suppressing noise and absorbing illuminance information. In particular, the proposed Intensity Estimation Unit (IEU) generates the light intensity map and innovatively guides SRU to adaptively brighten inconsistent illumination. Further, aiming at efficiently utilizing key features and avoiding light interference, an Advanced Fusion Block (AFB) is developed to cross-fuse low-resolution features, reconstructed features and illuminance features in pairs. Moreover, SRU introduces a gate mechanism to dynamically adjust its composition, overcoming the limitations of fixed-scale SR. LCUN is compared with the retrained SISR methods and the combined SISR methods on low-light and uneven-light images. Extensive experiments demonstrate that LCUN advances the state-of-the-arts SISR methods in terms of objective metrics and visual effects, and it can reconstruct relatively clear textures and cope with complex lighting.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3194169</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>anti-illumination ; cross-fusion ; Estimation ; Illuminance ; Illumination ; Image enhancement ; Image reconstruction ; Image resolution ; Image super-resolution ; intensity estimation ; Interference ; Light ; Lighting ; low-light image ; Luminous intensity ; Performance degradation ; Photodegradation ; Robustness ; Superresolution ; Visual effects</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-12, Vol.32 (12), p.8436-8449</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-dc00964a8ab7b2914bcd040361ce0ee5ec73c9e6342e365c60312d05461335503</citedby><cites>FETCH-LOGICAL-c225t-dc00964a8ab7b2914bcd040361ce0ee5ec73c9e6342e365c60312d05461335503</cites><orcidid>0000-0001-8831-1994 ; 0000-0001-9097-0657 ; 0000-0003-2873-2636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9841591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9841591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Deqiang</creatorcontrib><creatorcontrib>Chen, Liangliang</creatorcontrib><creatorcontrib>Lv, Chen</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Kou, Qiqi</creatorcontrib><title>Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image Super-Resolution</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>The learning-based methods for single image super- resolution (SISR) can reconstruct realistic details, but they suffer severe performance degradation for low-light images because of their ignorance of negative effects of illumination, and even produce overexposure for unevenly illuminated images. In this paper, we pioneer an anti-illumination approach toward SISR named Light-guided and Cross-fusion U-Net (LCUN), which can simultaneously improve the texture details and lighting of low-resolution images. In our design, we develop a U-Net for SISR (SRU) to reconstruct super- resolution (SR) images from coarse to fine, effectively suppressing noise and absorbing illuminance information. In particular, the proposed Intensity Estimation Unit (IEU) generates the light intensity map and innovatively guides SRU to adaptively brighten inconsistent illumination. Further, aiming at efficiently utilizing key features and avoiding light interference, an Advanced Fusion Block (AFB) is developed to cross-fuse low-resolution features, reconstructed features and illuminance features in pairs. Moreover, SRU introduces a gate mechanism to dynamically adjust its composition, overcoming the limitations of fixed-scale SR. LCUN is compared with the retrained SISR methods and the combined SISR methods on low-light and uneven-light images. Extensive experiments demonstrate that LCUN advances the state-of-the-arts SISR methods in terms of objective metrics and visual effects, and it can reconstruct relatively clear textures and cope with complex lighting.</description><subject>anti-illumination</subject><subject>cross-fusion</subject><subject>Estimation</subject><subject>Illuminance</subject><subject>Illumination</subject><subject>Image enhancement</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image super-resolution</subject><subject>intensity estimation</subject><subject>Interference</subject><subject>Light</subject><subject>Lighting</subject><subject>low-light image</subject><subject>Luminous intensity</subject><subject>Performance degradation</subject><subject>Photodegradation</subject><subject>Robustness</subject><subject>Superresolution</subject><subject>Visual effects</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxRujiYh-Ab008bw4s__aPRIiSELUCHjdlO2AJaXF3fbgt7cV4mkmM-_Ny_yi6B5hhAjmaTVZfq5GHDgfCTQStbmIBqhUyjgHddn1oJClHNV1dBPCHgBlKpNB9L4odl8Nm7VFTnmcVXk88XUIbNqGoq7iNXulJt7WPh5XTcHmZdkeiipr-t38kO0oXrZH8uyDQl22_fg2utpmZaC7cx1G6-nzavLCFm-z-WS8YI5z1bDcARgtszTbJBtuUG5cDhKERkdApMglwhnSQnISWjkNAnkOSmoUQikQw-jxdPfo6--WQmP3deurLtLyRCYaUWveqfhJ5fqvPG3t0ReHzP9YBNuTs3_kbE_Onsl1poeTqSCif4NJJSqD4hfSumiZ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cheng, Deqiang</creator><creator>Chen, Liangliang</creator><creator>Lv, Chen</creator><creator>Guo, Lin</creator><creator>Kou, Qiqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8831-1994</orcidid><orcidid>https://orcid.org/0000-0001-9097-0657</orcidid><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid></search><sort><creationdate>20221201</creationdate><title>Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image Super-Resolution</title><author>Cheng, Deqiang ; Chen, Liangliang ; Lv, Chen ; Guo, Lin ; Kou, Qiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-dc00964a8ab7b2914bcd040361ce0ee5ec73c9e6342e365c60312d05461335503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anti-illumination</topic><topic>cross-fusion</topic><topic>Estimation</topic><topic>Illuminance</topic><topic>Illumination</topic><topic>Image enhancement</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image super-resolution</topic><topic>intensity estimation</topic><topic>Interference</topic><topic>Light</topic><topic>Lighting</topic><topic>low-light image</topic><topic>Luminous intensity</topic><topic>Performance degradation</topic><topic>Photodegradation</topic><topic>Robustness</topic><topic>Superresolution</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Deqiang</creatorcontrib><creatorcontrib>Chen, Liangliang</creatorcontrib><creatorcontrib>Lv, Chen</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Kou, Qiqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Deqiang</au><au>Chen, Liangliang</au><au>Lv, Chen</au><au>Guo, Lin</au><au>Kou, Qiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image Super-Resolution</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>12</issue><spage>8436</spage><epage>8449</epage><pages>8436-8449</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>The learning-based methods for single image super- resolution (SISR) can reconstruct realistic details, but they suffer severe performance degradation for low-light images because of their ignorance of negative effects of illumination, and even produce overexposure for unevenly illuminated images. In this paper, we pioneer an anti-illumination approach toward SISR named Light-guided and Cross-fusion U-Net (LCUN), which can simultaneously improve the texture details and lighting of low-resolution images. In our design, we develop a U-Net for SISR (SRU) to reconstruct super- resolution (SR) images from coarse to fine, effectively suppressing noise and absorbing illuminance information. In particular, the proposed Intensity Estimation Unit (IEU) generates the light intensity map and innovatively guides SRU to adaptively brighten inconsistent illumination. Further, aiming at efficiently utilizing key features and avoiding light interference, an Advanced Fusion Block (AFB) is developed to cross-fuse low-resolution features, reconstructed features and illuminance features in pairs. Moreover, SRU introduces a gate mechanism to dynamically adjust its composition, overcoming the limitations of fixed-scale SR. LCUN is compared with the retrained SISR methods and the combined SISR methods on low-light and uneven-light images. Extensive experiments demonstrate that LCUN advances the state-of-the-arts SISR methods in terms of objective metrics and visual effects, and it can reconstruct relatively clear textures and cope with complex lighting.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3194169</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8831-1994</orcidid><orcidid>https://orcid.org/0000-0001-9097-0657</orcidid><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-12, Vol.32 (12), p.8436-8449 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2747611662 |
source | IEEE Electronic Library (IEL) |
subjects | anti-illumination cross-fusion Estimation Illuminance Illumination Image enhancement Image reconstruction Image resolution Image super-resolution intensity estimation Interference Light Lighting low-light image Luminous intensity Performance degradation Photodegradation Robustness Superresolution Visual effects |
title | Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image Super-Resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-Guided%20and%20Cross-Fusion%20U-Net%20for%20Anti-Illumination%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Cheng,%20Deqiang&rft.date=2022-12-01&rft.volume=32&rft.issue=12&rft.spage=8436&rft.epage=8449&rft.pages=8436-8449&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3194169&rft_dat=%3Cproquest_RIE%3E2747611662%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747611662&rft_id=info:pmid/&rft_ieee_id=9841591&rfr_iscdi=true |