Deep Dynamic Scene Deblurring From Optical Flow

Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-12, Vol.32 (12), p.8250-8260
Hauptverfasser: Zhang, Jiawei, Pan, Jinshan, Wang, Daoye, Zhou, Shangchen, Wei, Xing, Zhao, Furong, Liu, Jianbo, Ren, Jimmy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8260
container_issue 12
container_start_page 8250
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Zhang, Jiawei
Pan, Jinshan
Wang, Daoye
Zhou, Shangchen
Wei, Xing
Zhao, Furong
Liu, Jianbo
Ren, Jimmy
description Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.
doi_str_mv 10.1109/TCSVT.2021.3084616
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2747611593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9443198</ieee_id><sourcerecordid>2747611593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v1D-iFxDPtzn7A7tEUqyZNeih63SzLYGgo4AIx_fel0niaObzPzJuHkEegCwCql-lq95UuGGWw4FSJCKIrMgMpVcgYldfjTiWEioG8JXddt6cUhBLxjCwTxDZIjrU9lC7YOawxSDCrBu_L-jtY--YQbNu-dLYK1lXze09uClt1-HCZc_K5fk1X7-Fm-_axetmEjmnZh4IXirlYSspBI1od80Lz3EoVKW35WCTjRQ4s4s5Z4TQKpTIZ58icBEYpn5Pn6W7rm58Bu97sm8HX40vDYhFHAFLzMcWmlPNN13ksTOvLg_VHA9ScxZg_MeYsxlzEjNDTBJWI-A9oIcaqip8AgNFcog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747611593</pqid></control><display><type>article</type><title>Deep Dynamic Scene Deblurring From Optical Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jiawei ; Pan, Jinshan ; Wang, Daoye ; Zhou, Shangchen ; Wei, Xing ; Zhao, Furong ; Liu, Jianbo ; Ren, Jimmy</creator><creatorcontrib>Zhang, Jiawei ; Pan, Jinshan ; Wang, Daoye ; Zhou, Shangchen ; Wei, Xing ; Zhao, Furong ; Liu, Jianbo ; Ren, Jimmy</creatorcontrib><description>Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3084616</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Balances (scales) ; convolutional neural network ; Convolutional neural networks ; Deblurring ; Flow nets ; Heuristic algorithms ; Image reconstruction ; Image restoration ; Model accuracy ; Neural networks ; Optical computing ; Optical fiber networks ; optical flow ; Optical flow (image analysis) ; Optical imaging ; Pedestrians ; Recurrent neural networks ; spatially variant recurrent neural network</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-12, Vol.32 (12), p.8250-8260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</citedby><cites>FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</cites><orcidid>0000-0003-0304-9507 ; 0000-0002-5888-3083 ; 0000-0002-2879-6114 ; 0000-0002-2292-4592 ; 0000-0001-8201-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9443198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9443198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Pan, Jinshan</creatorcontrib><creatorcontrib>Wang, Daoye</creatorcontrib><creatorcontrib>Zhou, Shangchen</creatorcontrib><creatorcontrib>Wei, Xing</creatorcontrib><creatorcontrib>Zhao, Furong</creatorcontrib><creatorcontrib>Liu, Jianbo</creatorcontrib><creatorcontrib>Ren, Jimmy</creatorcontrib><title>Deep Dynamic Scene Deblurring From Optical Flow</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Balances (scales)</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deblurring</subject><subject>Flow nets</subject><subject>Heuristic algorithms</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optical computing</subject><subject>Optical fiber networks</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Pedestrians</subject><subject>Recurrent neural networks</subject><subject>spatially variant recurrent neural network</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Pg0AQhjdGE2v1D-iFxDPtzn7A7tEUqyZNeih63SzLYGgo4AIx_fel0niaObzPzJuHkEegCwCql-lq95UuGGWw4FSJCKIrMgMpVcgYldfjTiWEioG8JXddt6cUhBLxjCwTxDZIjrU9lC7YOawxSDCrBu_L-jtY--YQbNu-dLYK1lXze09uClt1-HCZc_K5fk1X7-Fm-_axetmEjmnZh4IXirlYSspBI1od80Lz3EoVKW35WCTjRQ4s4s5Z4TQKpTIZ58icBEYpn5Pn6W7rm58Bu97sm8HX40vDYhFHAFLzMcWmlPNN13ksTOvLg_VHA9ScxZg_MeYsxlzEjNDTBJWI-A9oIcaqip8AgNFcog</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Jiawei</creator><creator>Pan, Jinshan</creator><creator>Wang, Daoye</creator><creator>Zhou, Shangchen</creator><creator>Wei, Xing</creator><creator>Zhao, Furong</creator><creator>Liu, Jianbo</creator><creator>Ren, Jimmy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0304-9507</orcidid><orcidid>https://orcid.org/0000-0002-5888-3083</orcidid><orcidid>https://orcid.org/0000-0002-2879-6114</orcidid><orcidid>https://orcid.org/0000-0002-2292-4592</orcidid><orcidid>https://orcid.org/0000-0001-8201-8877</orcidid></search><sort><creationdate>20221201</creationdate><title>Deep Dynamic Scene Deblurring From Optical Flow</title><author>Zhang, Jiawei ; Pan, Jinshan ; Wang, Daoye ; Zhou, Shangchen ; Wei, Xing ; Zhao, Furong ; Liu, Jianbo ; Ren, Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Balances (scales)</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deblurring</topic><topic>Flow nets</topic><topic>Heuristic algorithms</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optical computing</topic><topic>Optical fiber networks</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Pedestrians</topic><topic>Recurrent neural networks</topic><topic>spatially variant recurrent neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Pan, Jinshan</creatorcontrib><creatorcontrib>Wang, Daoye</creatorcontrib><creatorcontrib>Zhou, Shangchen</creatorcontrib><creatorcontrib>Wei, Xing</creatorcontrib><creatorcontrib>Zhao, Furong</creatorcontrib><creatorcontrib>Liu, Jianbo</creatorcontrib><creatorcontrib>Ren, Jimmy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jiawei</au><au>Pan, Jinshan</au><au>Wang, Daoye</au><au>Zhou, Shangchen</au><au>Wei, Xing</au><au>Zhao, Furong</au><au>Liu, Jianbo</au><au>Ren, Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Dynamic Scene Deblurring From Optical Flow</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>12</issue><spage>8250</spage><epage>8260</epage><pages>8250-8260</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3084616</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0304-9507</orcidid><orcidid>https://orcid.org/0000-0002-5888-3083</orcidid><orcidid>https://orcid.org/0000-0002-2879-6114</orcidid><orcidid>https://orcid.org/0000-0002-2292-4592</orcidid><orcidid>https://orcid.org/0000-0001-8201-8877</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-12, Vol.32 (12), p.8250-8260
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2747611593
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Balances (scales)
convolutional neural network
Convolutional neural networks
Deblurring
Flow nets
Heuristic algorithms
Image reconstruction
Image restoration
Model accuracy
Neural networks
Optical computing
Optical fiber networks
optical flow
Optical flow (image analysis)
Optical imaging
Pedestrians
Recurrent neural networks
spatially variant recurrent neural network
title Deep Dynamic Scene Deblurring From Optical Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Dynamic%20Scene%20Deblurring%20From%20Optical%20Flow&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Jiawei&rft.date=2022-12-01&rft.volume=32&rft.issue=12&rft.spage=8250&rft.epage=8260&rft.pages=8250-8260&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3084616&rft_dat=%3Cproquest_RIE%3E2747611593%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747611593&rft_id=info:pmid/&rft_ieee_id=9443198&rfr_iscdi=true