Deep Dynamic Scene Deblurring From Optical Flow
Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform bl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-12, Vol.32 (12), p.8250-8260 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8260 |
---|---|
container_issue | 12 |
container_start_page | 8250 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Zhang, Jiawei Pan, Jinshan Wang, Daoye Zhou, Shangchen Wei, Xing Zhao, Furong Liu, Jianbo Ren, Jimmy |
description | Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size. |
doi_str_mv | 10.1109/TCSVT.2021.3084616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2747611593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9443198</ieee_id><sourcerecordid>2747611593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v1D-iFxDPtzn7A7tEUqyZNeih63SzLYGgo4AIx_fel0niaObzPzJuHkEegCwCql-lq95UuGGWw4FSJCKIrMgMpVcgYldfjTiWEioG8JXddt6cUhBLxjCwTxDZIjrU9lC7YOawxSDCrBu_L-jtY--YQbNu-dLYK1lXze09uClt1-HCZc_K5fk1X7-Fm-_axetmEjmnZh4IXirlYSspBI1od80Lz3EoVKW35WCTjRQ4s4s5Z4TQKpTIZ58icBEYpn5Pn6W7rm58Bu97sm8HX40vDYhFHAFLzMcWmlPNN13ksTOvLg_VHA9ScxZg_MeYsxlzEjNDTBJWI-A9oIcaqip8AgNFcog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747611593</pqid></control><display><type>article</type><title>Deep Dynamic Scene Deblurring From Optical Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jiawei ; Pan, Jinshan ; Wang, Daoye ; Zhou, Shangchen ; Wei, Xing ; Zhao, Furong ; Liu, Jianbo ; Ren, Jimmy</creator><creatorcontrib>Zhang, Jiawei ; Pan, Jinshan ; Wang, Daoye ; Zhou, Shangchen ; Wei, Xing ; Zhao, Furong ; Liu, Jianbo ; Ren, Jimmy</creatorcontrib><description>Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3084616</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Balances (scales) ; convolutional neural network ; Convolutional neural networks ; Deblurring ; Flow nets ; Heuristic algorithms ; Image reconstruction ; Image restoration ; Model accuracy ; Neural networks ; Optical computing ; Optical fiber networks ; optical flow ; Optical flow (image analysis) ; Optical imaging ; Pedestrians ; Recurrent neural networks ; spatially variant recurrent neural network</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-12, Vol.32 (12), p.8250-8260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</citedby><cites>FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</cites><orcidid>0000-0003-0304-9507 ; 0000-0002-5888-3083 ; 0000-0002-2879-6114 ; 0000-0002-2292-4592 ; 0000-0001-8201-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9443198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9443198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Pan, Jinshan</creatorcontrib><creatorcontrib>Wang, Daoye</creatorcontrib><creatorcontrib>Zhou, Shangchen</creatorcontrib><creatorcontrib>Wei, Xing</creatorcontrib><creatorcontrib>Zhao, Furong</creatorcontrib><creatorcontrib>Liu, Jianbo</creatorcontrib><creatorcontrib>Ren, Jimmy</creatorcontrib><title>Deep Dynamic Scene Deblurring From Optical Flow</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Balances (scales)</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deblurring</subject><subject>Flow nets</subject><subject>Heuristic algorithms</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optical computing</subject><subject>Optical fiber networks</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Pedestrians</subject><subject>Recurrent neural networks</subject><subject>spatially variant recurrent neural network</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Pg0AQhjdGE2v1D-iFxDPtzn7A7tEUqyZNeih63SzLYGgo4AIx_fel0niaObzPzJuHkEegCwCql-lq95UuGGWw4FSJCKIrMgMpVcgYldfjTiWEioG8JXddt6cUhBLxjCwTxDZIjrU9lC7YOawxSDCrBu_L-jtY--YQbNu-dLYK1lXze09uClt1-HCZc_K5fk1X7-Fm-_axetmEjmnZh4IXirlYSspBI1od80Lz3EoVKW35WCTjRQ4s4s5Z4TQKpTIZ58icBEYpn5Pn6W7rm58Bu97sm8HX40vDYhFHAFLzMcWmlPNN13ksTOvLg_VHA9ScxZg_MeYsxlzEjNDTBJWI-A9oIcaqip8AgNFcog</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Jiawei</creator><creator>Pan, Jinshan</creator><creator>Wang, Daoye</creator><creator>Zhou, Shangchen</creator><creator>Wei, Xing</creator><creator>Zhao, Furong</creator><creator>Liu, Jianbo</creator><creator>Ren, Jimmy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0304-9507</orcidid><orcidid>https://orcid.org/0000-0002-5888-3083</orcidid><orcidid>https://orcid.org/0000-0002-2879-6114</orcidid><orcidid>https://orcid.org/0000-0002-2292-4592</orcidid><orcidid>https://orcid.org/0000-0001-8201-8877</orcidid></search><sort><creationdate>20221201</creationdate><title>Deep Dynamic Scene Deblurring From Optical Flow</title><author>Zhang, Jiawei ; Pan, Jinshan ; Wang, Daoye ; Zhou, Shangchen ; Wei, Xing ; Zhao, Furong ; Liu, Jianbo ; Ren, Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-43f82c7550319eea973f93da58689a3821b3fd1263cca4c9e488b57de2c512003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Balances (scales)</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deblurring</topic><topic>Flow nets</topic><topic>Heuristic algorithms</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optical computing</topic><topic>Optical fiber networks</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Pedestrians</topic><topic>Recurrent neural networks</topic><topic>spatially variant recurrent neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Pan, Jinshan</creatorcontrib><creatorcontrib>Wang, Daoye</creatorcontrib><creatorcontrib>Zhou, Shangchen</creatorcontrib><creatorcontrib>Wei, Xing</creatorcontrib><creatorcontrib>Zhao, Furong</creatorcontrib><creatorcontrib>Liu, Jianbo</creatorcontrib><creatorcontrib>Ren, Jimmy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jiawei</au><au>Pan, Jinshan</au><au>Wang, Daoye</au><au>Zhou, Shangchen</au><au>Wei, Xing</au><au>Zhao, Furong</au><au>Liu, Jianbo</au><au>Ren, Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Dynamic Scene Deblurring From Optical Flow</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>12</issue><spage>8250</spage><epage>8260</epage><pages>8250-8260</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitatively and qualitatively evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3084616</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0304-9507</orcidid><orcidid>https://orcid.org/0000-0002-5888-3083</orcidid><orcidid>https://orcid.org/0000-0002-2879-6114</orcidid><orcidid>https://orcid.org/0000-0002-2292-4592</orcidid><orcidid>https://orcid.org/0000-0001-8201-8877</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-12, Vol.32 (12), p.8250-8260 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2747611593 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Balances (scales) convolutional neural network Convolutional neural networks Deblurring Flow nets Heuristic algorithms Image reconstruction Image restoration Model accuracy Neural networks Optical computing Optical fiber networks optical flow Optical flow (image analysis) Optical imaging Pedestrians Recurrent neural networks spatially variant recurrent neural network |
title | Deep Dynamic Scene Deblurring From Optical Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Dynamic%20Scene%20Deblurring%20From%20Optical%20Flow&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Jiawei&rft.date=2022-12-01&rft.volume=32&rft.issue=12&rft.spage=8250&rft.epage=8260&rft.pages=8250-8260&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3084616&rft_dat=%3Cproquest_RIE%3E2747611593%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747611593&rft_id=info:pmid/&rft_ieee_id=9443198&rfr_iscdi=true |