DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations

One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-12, Vol.23 (12), p.25047-25053
Hauptverfasser: Min, Dongchan, Kim, Minchan, Lee, Jinsil, Circiu, Mihaela Simona, Meurer, Michael, Lee, Jiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25053
container_issue 12
container_start_page 25047
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Min, Dongchan
Kim, Minchan
Lee, Jinsil
Circiu, Mihaela Simona
Meurer, Michael
Lee, Jiyun
description One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.
doi_str_mv 10.1109/TITS.2022.3207281
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2747611583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905421</ieee_id><sourcerecordid>2747611583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujifjnAxgvTTwvtp1tt3tEQCQBTFyMx6a7zEoJstiWg9_eXSGeZvLy3szLj5A7zvqcs_xxOV0WfcGE6INgmdD8jPS4lDphjKvzbhdpkjPJLslVCJtWTSXnPfIxWiySJxtwRQf7vW9staaxoXMX3aeNSOeHbXR7G9d07H3jA21qOnJ1jR530dktnSyKgr7hn1AhLaKNrtmFG3JR223A29O8Ju_P4-XwJZm9TqbDwSypAFRMUFkJGlm5slCVSqfMSi4yQM1TBTbTAnJpU52tWM4sKFSgy7qEMqssqwHgmjwc77bdvw8Yotk0B79rXxqRpZniXOrOxY-uyjcheKzN3rsv638MZ6bjZzp-puNnTvzazP0x4xDx35-3DFPB4Rcma2qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747611583</pqid></control><display><type>article</type><title>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</title><source>IEEE Electronic Library (IEL)</source><creator>Min, Dongchan ; Kim, Minchan ; Lee, Jinsil ; Circiu, Mihaela Simona ; Meurer, Michael ; Lee, Jiyun</creator><creatorcontrib>Min, Dongchan ; Kim, Minchan ; Lee, Jinsil ; Circiu, Mihaela Simona ; Meurer, Michael ; Lee, Jiyun</creatorcontrib><description>One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3207281</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; deep neural network ; Differential global navigation satellite system ; Errors ; Geometry ; Global navigation satellite system ; Measurement uncertainty ; multipath error mitigation ; Navigation satellites ; Receiving antennas ; Satellite antennas ; Satellites ; Signal to noise ratio</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-12, Vol.23 (12), p.25047-25053</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</citedby><cites>FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</cites><orcidid>0000-0001-6313-4813 ; 0000-0002-2291-3623 ; 0000-0001-7465-6705 ; 0000-0002-1441-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905421$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Min, Dongchan</creatorcontrib><creatorcontrib>Kim, Minchan</creatorcontrib><creatorcontrib>Lee, Jinsil</creatorcontrib><creatorcontrib>Circiu, Mihaela Simona</creatorcontrib><creatorcontrib>Meurer, Michael</creatorcontrib><creatorcontrib>Lee, Jiyun</creatorcontrib><title>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.</description><subject>Artificial neural networks</subject><subject>deep neural network</subject><subject>Differential global navigation satellite system</subject><subject>Errors</subject><subject>Geometry</subject><subject>Global navigation satellite system</subject><subject>Measurement uncertainty</subject><subject>multipath error mitigation</subject><subject>Navigation satellites</subject><subject>Receiving antennas</subject><subject>Satellite antennas</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujifjnAxgvTTwvtp1tt3tEQCQBTFyMx6a7zEoJstiWg9_eXSGeZvLy3szLj5A7zvqcs_xxOV0WfcGE6INgmdD8jPS4lDphjKvzbhdpkjPJLslVCJtWTSXnPfIxWiySJxtwRQf7vW9staaxoXMX3aeNSOeHbXR7G9d07H3jA21qOnJ1jR530dktnSyKgr7hn1AhLaKNrtmFG3JR223A29O8Ju_P4-XwJZm9TqbDwSypAFRMUFkJGlm5slCVSqfMSi4yQM1TBTbTAnJpU52tWM4sKFSgy7qEMqssqwHgmjwc77bdvw8Yotk0B79rXxqRpZniXOrOxY-uyjcheKzN3rsv638MZ6bjZzp-puNnTvzazP0x4xDx35-3DFPB4Rcma2qT</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Min, Dongchan</creator><creator>Kim, Minchan</creator><creator>Lee, Jinsil</creator><creator>Circiu, Mihaela Simona</creator><creator>Meurer, Michael</creator><creator>Lee, Jiyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6313-4813</orcidid><orcidid>https://orcid.org/0000-0002-2291-3623</orcidid><orcidid>https://orcid.org/0000-0001-7465-6705</orcidid><orcidid>https://orcid.org/0000-0002-1441-1383</orcidid></search><sort><creationdate>20221201</creationdate><title>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</title><author>Min, Dongchan ; Kim, Minchan ; Lee, Jinsil ; Circiu, Mihaela Simona ; Meurer, Michael ; Lee, Jiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>deep neural network</topic><topic>Differential global navigation satellite system</topic><topic>Errors</topic><topic>Geometry</topic><topic>Global navigation satellite system</topic><topic>Measurement uncertainty</topic><topic>multipath error mitigation</topic><topic>Navigation satellites</topic><topic>Receiving antennas</topic><topic>Satellite antennas</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Dongchan</creatorcontrib><creatorcontrib>Kim, Minchan</creatorcontrib><creatorcontrib>Lee, Jinsil</creatorcontrib><creatorcontrib>Circiu, Mihaela Simona</creatorcontrib><creatorcontrib>Meurer, Michael</creatorcontrib><creatorcontrib>Lee, Jiyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Dongchan</au><au>Kim, Minchan</au><au>Lee, Jinsil</au><au>Circiu, Mihaela Simona</au><au>Meurer, Michael</au><au>Lee, Jiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>12</issue><spage>25047</spage><epage>25053</epage><pages>25047-25053</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3207281</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6313-4813</orcidid><orcidid>https://orcid.org/0000-0002-2291-3623</orcidid><orcidid>https://orcid.org/0000-0001-7465-6705</orcidid><orcidid>https://orcid.org/0000-0002-1441-1383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-12, Vol.23 (12), p.25047-25053
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2747611583
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
deep neural network
Differential global navigation satellite system
Errors
Geometry
Global navigation satellite system
Measurement uncertainty
multipath error mitigation
Navigation satellites
Receiving antennas
Satellite antennas
Satellites
Signal to noise ratio
title DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNN-Based%20Approach%20to%20Mitigate%20Multipath%20Errors%20of%20Differential%20GNSS%20Reference%20Stations&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Min,%20Dongchan&rft.date=2022-12-01&rft.volume=23&rft.issue=12&rft.spage=25047&rft.epage=25053&rft.pages=25047-25053&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3207281&rft_dat=%3Cproquest_ieee_%3E2747611583%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747611583&rft_id=info:pmid/&rft_ieee_id=9905421&rfr_iscdi=true