DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations
One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to ca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-12, Vol.23 (12), p.25047-25053 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25053 |
---|---|
container_issue | 12 |
container_start_page | 25047 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Min, Dongchan Kim, Minchan Lee, Jinsil Circiu, Mihaela Simona Meurer, Michael Lee, Jiyun |
description | One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model. |
doi_str_mv | 10.1109/TITS.2022.3207281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2747611583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905421</ieee_id><sourcerecordid>2747611583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujifjnAxgvTTwvtp1tt3tEQCQBTFyMx6a7zEoJstiWg9_eXSGeZvLy3szLj5A7zvqcs_xxOV0WfcGE6INgmdD8jPS4lDphjKvzbhdpkjPJLslVCJtWTSXnPfIxWiySJxtwRQf7vW9staaxoXMX3aeNSOeHbXR7G9d07H3jA21qOnJ1jR530dktnSyKgr7hn1AhLaKNrtmFG3JR223A29O8Ju_P4-XwJZm9TqbDwSypAFRMUFkJGlm5slCVSqfMSi4yQM1TBTbTAnJpU52tWM4sKFSgy7qEMqssqwHgmjwc77bdvw8Yotk0B79rXxqRpZniXOrOxY-uyjcheKzN3rsv638MZ6bjZzp-puNnTvzazP0x4xDx35-3DFPB4Rcma2qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747611583</pqid></control><display><type>article</type><title>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</title><source>IEEE Electronic Library (IEL)</source><creator>Min, Dongchan ; Kim, Minchan ; Lee, Jinsil ; Circiu, Mihaela Simona ; Meurer, Michael ; Lee, Jiyun</creator><creatorcontrib>Min, Dongchan ; Kim, Minchan ; Lee, Jinsil ; Circiu, Mihaela Simona ; Meurer, Michael ; Lee, Jiyun</creatorcontrib><description>One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3207281</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; deep neural network ; Differential global navigation satellite system ; Errors ; Geometry ; Global navigation satellite system ; Measurement uncertainty ; multipath error mitigation ; Navigation satellites ; Receiving antennas ; Satellite antennas ; Satellites ; Signal to noise ratio</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-12, Vol.23 (12), p.25047-25053</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</citedby><cites>FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</cites><orcidid>0000-0001-6313-4813 ; 0000-0002-2291-3623 ; 0000-0001-7465-6705 ; 0000-0002-1441-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905421$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Min, Dongchan</creatorcontrib><creatorcontrib>Kim, Minchan</creatorcontrib><creatorcontrib>Lee, Jinsil</creatorcontrib><creatorcontrib>Circiu, Mihaela Simona</creatorcontrib><creatorcontrib>Meurer, Michael</creatorcontrib><creatorcontrib>Lee, Jiyun</creatorcontrib><title>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.</description><subject>Artificial neural networks</subject><subject>deep neural network</subject><subject>Differential global navigation satellite system</subject><subject>Errors</subject><subject>Geometry</subject><subject>Global navigation satellite system</subject><subject>Measurement uncertainty</subject><subject>multipath error mitigation</subject><subject>Navigation satellites</subject><subject>Receiving antennas</subject><subject>Satellite antennas</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujifjnAxgvTTwvtp1tt3tEQCQBTFyMx6a7zEoJstiWg9_eXSGeZvLy3szLj5A7zvqcs_xxOV0WfcGE6INgmdD8jPS4lDphjKvzbhdpkjPJLslVCJtWTSXnPfIxWiySJxtwRQf7vW9staaxoXMX3aeNSOeHbXR7G9d07H3jA21qOnJ1jR530dktnSyKgr7hn1AhLaKNrtmFG3JR223A29O8Ju_P4-XwJZm9TqbDwSypAFRMUFkJGlm5slCVSqfMSi4yQM1TBTbTAnJpU52tWM4sKFSgy7qEMqssqwHgmjwc77bdvw8Yotk0B79rXxqRpZniXOrOxY-uyjcheKzN3rsv638MZ6bjZzp-puNnTvzazP0x4xDx35-3DFPB4Rcma2qT</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Min, Dongchan</creator><creator>Kim, Minchan</creator><creator>Lee, Jinsil</creator><creator>Circiu, Mihaela Simona</creator><creator>Meurer, Michael</creator><creator>Lee, Jiyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6313-4813</orcidid><orcidid>https://orcid.org/0000-0002-2291-3623</orcidid><orcidid>https://orcid.org/0000-0001-7465-6705</orcidid><orcidid>https://orcid.org/0000-0002-1441-1383</orcidid></search><sort><creationdate>20221201</creationdate><title>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</title><author>Min, Dongchan ; Kim, Minchan ; Lee, Jinsil ; Circiu, Mihaela Simona ; Meurer, Michael ; Lee, Jiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e6a538e0bda3cb6840a51273e81463a782395a487d090a36e638bfb3b7ca0f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>deep neural network</topic><topic>Differential global navigation satellite system</topic><topic>Errors</topic><topic>Geometry</topic><topic>Global navigation satellite system</topic><topic>Measurement uncertainty</topic><topic>multipath error mitigation</topic><topic>Navigation satellites</topic><topic>Receiving antennas</topic><topic>Satellite antennas</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Dongchan</creatorcontrib><creatorcontrib>Kim, Minchan</creatorcontrib><creatorcontrib>Lee, Jinsil</creatorcontrib><creatorcontrib>Circiu, Mihaela Simona</creatorcontrib><creatorcontrib>Meurer, Michael</creatorcontrib><creatorcontrib>Lee, Jiyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Dongchan</au><au>Kim, Minchan</au><au>Lee, Jinsil</au><au>Circiu, Mihaela Simona</au><au>Meurer, Michael</au><au>Lee, Jiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>12</issue><spage>25047</spage><epage>25053</epage><pages>25047-25053</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>One of the major error components of differential global navigation satellite systems is a multipath error in a reference station. This paper introduces a deep neural network based multipath modeling method. A signal to noise ratio, as well as satellite geometry, is used as a feature parameter to capture the variation of the multipath error caused by unavoidable changes in the vicinity of the reference station. The performance of the proposed method is demonstrated for both normal and varying multipath cases using experimental data. The remaining multipath error after mitigation is well bounded by the standardized error model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3207281</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6313-4813</orcidid><orcidid>https://orcid.org/0000-0002-2291-3623</orcidid><orcidid>https://orcid.org/0000-0001-7465-6705</orcidid><orcidid>https://orcid.org/0000-0002-1441-1383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-12, Vol.23 (12), p.25047-25053 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2747611583 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks deep neural network Differential global navigation satellite system Errors Geometry Global navigation satellite system Measurement uncertainty multipath error mitigation Navigation satellites Receiving antennas Satellite antennas Satellites Signal to noise ratio |
title | DNN-Based Approach to Mitigate Multipath Errors of Differential GNSS Reference Stations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNN-Based%20Approach%20to%20Mitigate%20Multipath%20Errors%20of%20Differential%20GNSS%20Reference%20Stations&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Min,%20Dongchan&rft.date=2022-12-01&rft.volume=23&rft.issue=12&rft.spage=25047&rft.epage=25053&rft.pages=25047-25053&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3207281&rft_dat=%3Cproquest_ieee_%3E2747611583%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747611583&rft_id=info:pmid/&rft_ieee_id=9905421&rfr_iscdi=true |