Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction

Predicting human motion from historical pose sequence is crucial for a machine to succeed in intelligent interactions with humans. One aspect that has been obviated so far, is the fact that how we represent the skeletal pose has a critical impact on the prediction results. Yet there is no effort tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-01, Vol.45 (1), p.681-697
Hauptverfasser: Liu, Zhenguang, Wu, Shuang, Jin, Shuyuan, Ji, Shouling, Liu, Qi, Lu, Shijian, Cheng, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 1
container_start_page 681
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Liu, Zhenguang
Wu, Shuang
Jin, Shuyuan
Ji, Shouling
Liu, Qi
Lu, Shijian
Cheng, Li
description Predicting human motion from historical pose sequence is crucial for a machine to succeed in intelligent interactions with humans. One aspect that has been obviated so far, is the fact that how we represent the skeletal pose has a critical impact on the prediction results. Yet there is no effort that investigates across different pose representation schemes. We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task. Moreover, recent approaches build upon off-the-shelf RNN units for motion prediction. These approaches process input pose sequence sequentially and inherently have difficulties in capturing long-term dependencies. In this paper, we propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction which simultaneously models local motion contexts and a global context. We further explore a geodesic loss and a forward kinematics loss for the motion prediction task, which have more geometric significance than the widely employed L2 loss. Interestingly, we applied our method to a range of articulate objects including human, fish, and mouse. Empirical results show that our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency, such as retaining natural human-like motions over 50 seconds predictions. Our codes are released.
doi_str_mv 10.1109/TPAMI.2021.3139918
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2747610716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9669004</ieee_id><sourcerecordid>2616956521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-1186748c9ae6286b678148264eb4a2fba97e20f1dc20941992ca3056e8d6530a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZNks8lR6lehYhEFbyHdnZUt7aYmW9F_b9bWHjxlknneYfIQcgp0CED11cv0-nE8ZJTBkAPXGtQe6YPmOuUZ1_ukT0GyVCmmeuQohDmlIDLKD0mPC62YzFmfvI2bTwxt_W7bunlPpi5g8owrjwGbNr65JiS2KZNH19XJyDUtfrUh3ktcdInK-YTf_PWnHsu66MpjclDZRcCT7Tkgr3e3L6OHdPJ0Px5dT9KCZ9CmAErmQhXaomRKzmSuQMTdBM6EZdXM6hwZraAsGNUCtGaF5TSTqEqZcWr5gFxu5q68-1jHr5hlHQpcLGyDbh0MkyB1JjMGEb34h87d2jdxO8NykUugOchIsQ1VeBeCx8qsfL20_tsANZ138-vddN7N1nsMnW9Hr2dLLHeRP9ERONsANSLu2lpKTangPxD-hYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747610716</pqid></control><display><type>article</type><title>Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zhenguang ; Wu, Shuang ; Jin, Shuyuan ; Ji, Shouling ; Liu, Qi ; Lu, Shijian ; Cheng, Li</creator><creatorcontrib>Liu, Zhenguang ; Wu, Shuang ; Jin, Shuyuan ; Ji, Shouling ; Liu, Qi ; Lu, Shijian ; Cheng, Li</creatorcontrib><description>Predicting human motion from historical pose sequence is crucial for a machine to succeed in intelligent interactions with humans. One aspect that has been obviated so far, is the fact that how we represent the skeletal pose has a critical impact on the prediction results. Yet there is no effort that investigates across different pose representation schemes. We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task. Moreover, recent approaches build upon off-the-shelf RNN units for motion prediction. These approaches process input pose sequence sequentially and inherently have difficulties in capturing long-term dependencies. In this paper, we propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction which simultaneously models local motion contexts and a global context. We further explore a geodesic loss and a forward kinematics loss for the motion prediction task, which have more geometric significance than the widely employed L2 loss. Interestingly, we applied our method to a range of articulate objects including human, fish, and mouse. Empirical results show that our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency, such as retaining natural human-like motions over 50 seconds predictions. Our codes are released.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3139918</identifier><identifier>PMID: 34982672</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Context modeling ; Human motion ; Humans ; Joints ; kinematic chain ; Kinematics ; Mice ; Motion ; motion context ; Motion prediction ; Neural Networks, Computer ; pose representation ; Predictions ; Predictive models ; recurrent neural network ; Representations ; Task analysis ; Three dimensional models ; Three dimensional motion ; Three-dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.681-697</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-1186748c9ae6286b678148264eb4a2fba97e20f1dc20941992ca3056e8d6530a3</citedby><cites>FETCH-LOGICAL-c351t-1186748c9ae6286b678148264eb4a2fba97e20f1dc20941992ca3056e8d6530a3</cites><orcidid>0000-0002-6766-2506 ; 0000-0003-3261-3533 ; 0000-0002-7551-7712 ; 0000-0003-4268-372X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9669004$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9669004$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34982672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhenguang</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><creatorcontrib>Jin, Shuyuan</creatorcontrib><creatorcontrib>Ji, Shouling</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Lu, Shijian</creatorcontrib><creatorcontrib>Cheng, Li</creatorcontrib><title>Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Predicting human motion from historical pose sequence is crucial for a machine to succeed in intelligent interactions with humans. One aspect that has been obviated so far, is the fact that how we represent the skeletal pose has a critical impact on the prediction results. Yet there is no effort that investigates across different pose representation schemes. We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task. Moreover, recent approaches build upon off-the-shelf RNN units for motion prediction. These approaches process input pose sequence sequentially and inherently have difficulties in capturing long-term dependencies. In this paper, we propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction which simultaneously models local motion contexts and a global context. We further explore a geodesic loss and a forward kinematics loss for the motion prediction task, which have more geometric significance than the widely employed L2 loss. Interestingly, we applied our method to a range of articulate objects including human, fish, and mouse. Empirical results show that our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency, such as retaining natural human-like motions over 50 seconds predictions. Our codes are released.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Context modeling</subject><subject>Human motion</subject><subject>Humans</subject><subject>Joints</subject><subject>kinematic chain</subject><subject>Kinematics</subject><subject>Mice</subject><subject>Motion</subject><subject>motion context</subject><subject>Motion prediction</subject><subject>Neural Networks, Computer</subject><subject>pose representation</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>recurrent neural network</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three dimensional motion</subject><subject>Three-dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZNks8lR6lehYhEFbyHdnZUt7aYmW9F_b9bWHjxlknneYfIQcgp0CED11cv0-nE8ZJTBkAPXGtQe6YPmOuUZ1_ukT0GyVCmmeuQohDmlIDLKD0mPC62YzFmfvI2bTwxt_W7bunlPpi5g8owrjwGbNr65JiS2KZNH19XJyDUtfrUh3ktcdInK-YTf_PWnHsu66MpjclDZRcCT7Tkgr3e3L6OHdPJ0Px5dT9KCZ9CmAErmQhXaomRKzmSuQMTdBM6EZdXM6hwZraAsGNUCtGaF5TSTqEqZcWr5gFxu5q68-1jHr5hlHQpcLGyDbh0MkyB1JjMGEb34h87d2jdxO8NykUugOchIsQ1VeBeCx8qsfL20_tsANZ138-vddN7N1nsMnW9Hr2dLLHeRP9ERONsANSLu2lpKTangPxD-hYo</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Zhenguang</creator><creator>Wu, Shuang</creator><creator>Jin, Shuyuan</creator><creator>Ji, Shouling</creator><creator>Liu, Qi</creator><creator>Lu, Shijian</creator><creator>Cheng, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6766-2506</orcidid><orcidid>https://orcid.org/0000-0003-3261-3533</orcidid><orcidid>https://orcid.org/0000-0002-7551-7712</orcidid><orcidid>https://orcid.org/0000-0003-4268-372X</orcidid></search><sort><creationdate>20230101</creationdate><title>Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction</title><author>Liu, Zhenguang ; Wu, Shuang ; Jin, Shuyuan ; Ji, Shouling ; Liu, Qi ; Lu, Shijian ; Cheng, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-1186748c9ae6286b678148264eb4a2fba97e20f1dc20941992ca3056e8d6530a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Context modeling</topic><topic>Human motion</topic><topic>Humans</topic><topic>Joints</topic><topic>kinematic chain</topic><topic>Kinematics</topic><topic>Mice</topic><topic>Motion</topic><topic>motion context</topic><topic>Motion prediction</topic><topic>Neural Networks, Computer</topic><topic>pose representation</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>recurrent neural network</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three dimensional motion</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhenguang</creatorcontrib><creatorcontrib>Wu, Shuang</creatorcontrib><creatorcontrib>Jin, Shuyuan</creatorcontrib><creatorcontrib>Ji, Shouling</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Lu, Shijian</creatorcontrib><creatorcontrib>Cheng, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zhenguang</au><au>Wu, Shuang</au><au>Jin, Shuyuan</au><au>Ji, Shouling</au><au>Liu, Qi</au><au>Lu, Shijian</au><au>Cheng, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>681</spage><epage>697</epage><pages>681-697</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Predicting human motion from historical pose sequence is crucial for a machine to succeed in intelligent interactions with humans. One aspect that has been obviated so far, is the fact that how we represent the skeletal pose has a critical impact on the prediction results. Yet there is no effort that investigates across different pose representation schemes. We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task. Moreover, recent approaches build upon off-the-shelf RNN units for motion prediction. These approaches process input pose sequence sequentially and inherently have difficulties in capturing long-term dependencies. In this paper, we propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction which simultaneously models local motion contexts and a global context. We further explore a geodesic loss and a forward kinematics loss for the motion prediction task, which have more geometric significance than the widely employed L2 loss. Interestingly, we applied our method to a range of articulate objects including human, fish, and mouse. Empirical results show that our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency, such as retaining natural human-like motions over 50 seconds predictions. Our codes are released.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34982672</pmid><doi>10.1109/TPAMI.2021.3139918</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6766-2506</orcidid><orcidid>https://orcid.org/0000-0003-3261-3533</orcidid><orcidid>https://orcid.org/0000-0002-7551-7712</orcidid><orcidid>https://orcid.org/0000-0003-4268-372X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-01, Vol.45 (1), p.681-697
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2747610716
source IEEE Electronic Library (IEL)
subjects Algorithms
Animals
Context modeling
Human motion
Humans
Joints
kinematic chain
Kinematics
Mice
Motion
motion context
Motion prediction
Neural Networks, Computer
pose representation
Predictions
Predictive models
recurrent neural network
Representations
Task analysis
Three dimensional models
Three dimensional motion
Three-dimensional displays
title Investigating Pose Representations and Motion Contexts Modeling for 3D Motion Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Pose%20Representations%20and%20Motion%20Contexts%20Modeling%20for%203D%20Motion%20Prediction&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20Zhenguang&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=681&rft.epage=697&rft.pages=681-697&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3139918&rft_dat=%3Cproquest_RIE%3E2616956521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747610716&rft_id=info:pmid/34982672&rft_ieee_id=9669004&rfr_iscdi=true