Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network

Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-12, Vol.15 (12), p.5059-5068
Hauptverfasser: Xu, Linpeng, Tian, Bining, Wang, Tianyue, Yu, Ying, Wu, Yucheng, Cui, Jiewu, Cao, Zhongnan, Wu, Jianhong, Zhang, Weike, Zhang, Qi, Liu, Jiaqin, Li, Zhanfeng, Tian, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5068
container_issue 12
container_start_page 5059
container_title Energy & environmental science
container_volume 15
creator Xu, Linpeng
Tian, Bining
Wang, Tianyue
Yu, Ying
Wu, Yucheng
Cui, Jiewu
Cao, Zhongnan
Wu, Jianhong
Zhang, Weike
Zhang, Qi
Liu, Jiaqin
Li, Zhanfeng
Tian, Yue
description Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C 3 N 4 /P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C 3 N 4 . We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C 3 N 4 /P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h −1 g −1 with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C 3 N 4 and tops those for all the previously reported polymer-based photocatalysts.
doi_str_mv 10.1039/D2EE02380F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747205337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747205337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</originalsourceid><addsrcrecordid>eNpFkM9KxDAQxoMouK5efIKAN6GaJm2THGX_qLDgRS9eSpJObdduU5NUrad9Q1_JLqt4mm_gNzPffAidx-QqJkxez-liQSgTZHmAJjFPkyjlJDv805mkx-jE-zUhGSVcTtB2XjswAT9H3lSwAdzZZtiAqw2uIICz6741obYt1tb64HFX2WCNCqoZwg4aCmdfoMWds0W_J99rhRV2oPu6CRg-A7QFFPh7GxXQjLNN_TW2LYQP615P0VGpGg9nv3WKnpaLx9ldtHq4vZ_drCJDUxkiIJmOBWHcxAyIEuNXxjCRKqE0Z5JTWgqdmFJIliU6zeKk5FolmaCsSKRK2RRd7PeORt968CFf296148mc8oRTkjLGR-pyTxlnvXdQ5p2rN8oNeUzyXcL5f8LsB_6xcMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747205337</pqid></control><display><type>article</type><title>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Linpeng ; Tian, Bining ; Wang, Tianyue ; Yu, Ying ; Wu, Yucheng ; Cui, Jiewu ; Cao, Zhongnan ; Wu, Jianhong ; Zhang, Weike ; Zhang, Qi ; Liu, Jiaqin ; Li, Zhanfeng ; Tian, Yue</creator><creatorcontrib>Xu, Linpeng ; Tian, Bining ; Wang, Tianyue ; Yu, Ying ; Wu, Yucheng ; Cui, Jiewu ; Cao, Zhongnan ; Wu, Jianhong ; Zhang, Weike ; Zhang, Qi ; Liu, Jiaqin ; Li, Zhanfeng ; Tian, Yue</creatorcontrib><description>Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C 3 N 4 /P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C 3 N 4 . We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C 3 N 4 /P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h −1 g −1 with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C 3 N 4 and tops those for all the previously reported polymer-based photocatalysts.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE02380F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nitride ; Carrier recombination ; Charge transfer ; Charge transport ; Electric fields ; Electromagnetic absorption ; Energy charge ; Energy transfer ; Excitons ; Heterojunctions ; Heterostructures ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Photocatalysis ; Photocatalysts ; Polymers ; Recombination ; Stacking</subject><ispartof>Energy &amp; environmental science, 2022-12, Vol.15 (12), p.5059-5068</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</citedby><cites>FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</cites><orcidid>0000-0001-5127-2928 ; 0000-0002-1752-6514 ; 0000-0003-1663-7447 ; 0000-0001-6340-0130 ; 0000-0001-8279-9335 ; 0000-0003-4613-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wang, Tianyue</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Cao, Zhongnan</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Weike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Liu, Jiaqin</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><title>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</title><title>Energy &amp; environmental science</title><description>Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C 3 N 4 /P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C 3 N 4 . We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C 3 N 4 /P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h −1 g −1 with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C 3 N 4 and tops those for all the previously reported polymer-based photocatalysts.</description><subject>Carbon nitride</subject><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electric fields</subject><subject>Electromagnetic absorption</subject><subject>Energy charge</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Polymers</subject><subject>Recombination</subject><subject>Stacking</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM9KxDAQxoMouK5efIKAN6GaJm2THGX_qLDgRS9eSpJObdduU5NUrad9Q1_JLqt4mm_gNzPffAidx-QqJkxez-liQSgTZHmAJjFPkyjlJDv805mkx-jE-zUhGSVcTtB2XjswAT9H3lSwAdzZZtiAqw2uIICz6741obYt1tb64HFX2WCNCqoZwg4aCmdfoMWds0W_J99rhRV2oPu6CRg-A7QFFPh7GxXQjLNN_TW2LYQP615P0VGpGg9nv3WKnpaLx9ldtHq4vZ_drCJDUxkiIJmOBWHcxAyIEuNXxjCRKqE0Z5JTWgqdmFJIliU6zeKk5FolmaCsSKRK2RRd7PeORt968CFf296148mc8oRTkjLGR-pyTxlnvXdQ5p2rN8oNeUzyXcL5f8LsB_6xcMY</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>Xu, Linpeng</creator><creator>Tian, Bining</creator><creator>Wang, Tianyue</creator><creator>Yu, Ying</creator><creator>Wu, Yucheng</creator><creator>Cui, Jiewu</creator><creator>Cao, Zhongnan</creator><creator>Wu, Jianhong</creator><creator>Zhang, Weike</creator><creator>Zhang, Qi</creator><creator>Liu, Jiaqin</creator><creator>Li, Zhanfeng</creator><creator>Tian, Yue</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5127-2928</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-1663-7447</orcidid><orcidid>https://orcid.org/0000-0001-6340-0130</orcidid><orcidid>https://orcid.org/0000-0001-8279-9335</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></search><sort><creationdate>20221207</creationdate><title>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</title><author>Xu, Linpeng ; Tian, Bining ; Wang, Tianyue ; Yu, Ying ; Wu, Yucheng ; Cui, Jiewu ; Cao, Zhongnan ; Wu, Jianhong ; Zhang, Weike ; Zhang, Qi ; Liu, Jiaqin ; Li, Zhanfeng ; Tian, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon nitride</topic><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electric fields</topic><topic>Electromagnetic absorption</topic><topic>Energy charge</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Polymers</topic><topic>Recombination</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wang, Tianyue</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Cao, Zhongnan</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Weike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Liu, Jiaqin</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Linpeng</au><au>Tian, Bining</au><au>Wang, Tianyue</au><au>Yu, Ying</au><au>Wu, Yucheng</au><au>Cui, Jiewu</au><au>Cao, Zhongnan</au><au>Wu, Jianhong</au><au>Zhang, Weike</au><au>Zhang, Qi</au><au>Liu, Jiaqin</au><au>Li, Zhanfeng</au><au>Tian, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-12-07</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>5059</spage><epage>5068</epage><pages>5059-5068</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C 3 N 4 /P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C 3 N 4 . We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C 3 N 4 /P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h −1 g −1 with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C 3 N 4 and tops those for all the previously reported polymer-based photocatalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2EE02380F</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5127-2928</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-1663-7447</orcidid><orcidid>https://orcid.org/0000-0001-6340-0130</orcidid><orcidid>https://orcid.org/0000-0001-8279-9335</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-12, Vol.15 (12), p.5059-5068
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2747205337
source Royal Society Of Chemistry Journals 2008-
subjects Carbon nitride
Carrier recombination
Charge transfer
Charge transport
Electric fields
Electromagnetic absorption
Energy charge
Energy transfer
Excitons
Heterojunctions
Heterostructures
Hydrogen
Hydrogen evolution
Hydrogen production
Photocatalysis
Photocatalysts
Polymers
Recombination
Stacking
title Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Z-scheme%20polymeric%20heterojunction%20boosts%20photocatalytic%20hydrogen%20production%20via%20a%20rebuilt%20extended%20%CF%80-delocalized%20network&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Xu,%20Linpeng&rft.date=2022-12-07&rft.volume=15&rft.issue=12&rft.spage=5059&rft.epage=5068&rft.pages=5059-5068&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE02380F&rft_dat=%3Cproquest_cross%3E2747205337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747205337&rft_id=info:pmid/&rfr_iscdi=true