Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network
Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is ther...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-12, Vol.15 (12), p.5059-5068 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5068 |
---|---|
container_issue | 12 |
container_start_page | 5059 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Xu, Linpeng Tian, Bining Wang, Tianyue Yu, Ying Wu, Yucheng Cui, Jiewu Cao, Zhongnan Wu, Jianhong Zhang, Weike Zhang, Qi Liu, Jiaqin Li, Zhanfeng Tian, Yue |
description | Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C
3
N
4
/P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C
3
N
4
. We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C
3
N
4
/P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h
−1
g
−1
with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C
3
N
4
and tops those for all the previously reported polymer-based photocatalysts. |
doi_str_mv | 10.1039/D2EE02380F |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747205337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747205337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</originalsourceid><addsrcrecordid>eNpFkM9KxDAQxoMouK5efIKAN6GaJm2THGX_qLDgRS9eSpJObdduU5NUrad9Q1_JLqt4mm_gNzPffAidx-QqJkxez-liQSgTZHmAJjFPkyjlJDv805mkx-jE-zUhGSVcTtB2XjswAT9H3lSwAdzZZtiAqw2uIICz6741obYt1tb64HFX2WCNCqoZwg4aCmdfoMWds0W_J99rhRV2oPu6CRg-A7QFFPh7GxXQjLNN_TW2LYQP615P0VGpGg9nv3WKnpaLx9ldtHq4vZ_drCJDUxkiIJmOBWHcxAyIEuNXxjCRKqE0Z5JTWgqdmFJIliU6zeKk5FolmaCsSKRK2RRd7PeORt968CFf296148mc8oRTkjLGR-pyTxlnvXdQ5p2rN8oNeUzyXcL5f8LsB_6xcMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747205337</pqid></control><display><type>article</type><title>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Linpeng ; Tian, Bining ; Wang, Tianyue ; Yu, Ying ; Wu, Yucheng ; Cui, Jiewu ; Cao, Zhongnan ; Wu, Jianhong ; Zhang, Weike ; Zhang, Qi ; Liu, Jiaqin ; Li, Zhanfeng ; Tian, Yue</creator><creatorcontrib>Xu, Linpeng ; Tian, Bining ; Wang, Tianyue ; Yu, Ying ; Wu, Yucheng ; Cui, Jiewu ; Cao, Zhongnan ; Wu, Jianhong ; Zhang, Weike ; Zhang, Qi ; Liu, Jiaqin ; Li, Zhanfeng ; Tian, Yue</creatorcontrib><description>Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C
3
N
4
/P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C
3
N
4
. We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C
3
N
4
/P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h
−1
g
−1
with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C
3
N
4
and tops those for all the previously reported polymer-based photocatalysts.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE02380F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nitride ; Carrier recombination ; Charge transfer ; Charge transport ; Electric fields ; Electromagnetic absorption ; Energy charge ; Energy transfer ; Excitons ; Heterojunctions ; Heterostructures ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Photocatalysis ; Photocatalysts ; Polymers ; Recombination ; Stacking</subject><ispartof>Energy & environmental science, 2022-12, Vol.15 (12), p.5059-5068</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</citedby><cites>FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</cites><orcidid>0000-0001-5127-2928 ; 0000-0002-1752-6514 ; 0000-0003-1663-7447 ; 0000-0001-6340-0130 ; 0000-0001-8279-9335 ; 0000-0003-4613-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wang, Tianyue</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Cao, Zhongnan</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Weike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Liu, Jiaqin</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><title>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</title><title>Energy & environmental science</title><description>Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C
3
N
4
/P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C
3
N
4
. We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C
3
N
4
/P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h
−1
g
−1
with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C
3
N
4
and tops those for all the previously reported polymer-based photocatalysts.</description><subject>Carbon nitride</subject><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electric fields</subject><subject>Electromagnetic absorption</subject><subject>Energy charge</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Polymers</subject><subject>Recombination</subject><subject>Stacking</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM9KxDAQxoMouK5efIKAN6GaJm2THGX_qLDgRS9eSpJObdduU5NUrad9Q1_JLqt4mm_gNzPffAidx-QqJkxez-liQSgTZHmAJjFPkyjlJDv805mkx-jE-zUhGSVcTtB2XjswAT9H3lSwAdzZZtiAqw2uIICz6741obYt1tb64HFX2WCNCqoZwg4aCmdfoMWds0W_J99rhRV2oPu6CRg-A7QFFPh7GxXQjLNN_TW2LYQP615P0VGpGg9nv3WKnpaLx9ldtHq4vZ_drCJDUxkiIJmOBWHcxAyIEuNXxjCRKqE0Z5JTWgqdmFJIliU6zeKk5FolmaCsSKRK2RRd7PeORt968CFf296148mc8oRTkjLGR-pyTxlnvXdQ5p2rN8oNeUzyXcL5f8LsB_6xcMY</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>Xu, Linpeng</creator><creator>Tian, Bining</creator><creator>Wang, Tianyue</creator><creator>Yu, Ying</creator><creator>Wu, Yucheng</creator><creator>Cui, Jiewu</creator><creator>Cao, Zhongnan</creator><creator>Wu, Jianhong</creator><creator>Zhang, Weike</creator><creator>Zhang, Qi</creator><creator>Liu, Jiaqin</creator><creator>Li, Zhanfeng</creator><creator>Tian, Yue</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5127-2928</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-1663-7447</orcidid><orcidid>https://orcid.org/0000-0001-6340-0130</orcidid><orcidid>https://orcid.org/0000-0001-8279-9335</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></search><sort><creationdate>20221207</creationdate><title>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</title><author>Xu, Linpeng ; Tian, Bining ; Wang, Tianyue ; Yu, Ying ; Wu, Yucheng ; Cui, Jiewu ; Cao, Zhongnan ; Wu, Jianhong ; Zhang, Weike ; Zhang, Qi ; Liu, Jiaqin ; Li, Zhanfeng ; Tian, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-e06b18037c13e0a8706cc385a8ab739722f8b4cf89364b5614f7ba46823d49a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon nitride</topic><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electric fields</topic><topic>Electromagnetic absorption</topic><topic>Energy charge</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Polymers</topic><topic>Recombination</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Linpeng</creatorcontrib><creatorcontrib>Tian, Bining</creatorcontrib><creatorcontrib>Wang, Tianyue</creatorcontrib><creatorcontrib>Yu, Ying</creatorcontrib><creatorcontrib>Wu, Yucheng</creatorcontrib><creatorcontrib>Cui, Jiewu</creatorcontrib><creatorcontrib>Cao, Zhongnan</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Weike</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Liu, Jiaqin</creatorcontrib><creatorcontrib>Li, Zhanfeng</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Linpeng</au><au>Tian, Bining</au><au>Wang, Tianyue</au><au>Yu, Ying</au><au>Wu, Yucheng</au><au>Cui, Jiewu</au><au>Cao, Zhongnan</au><au>Wu, Jianhong</au><au>Zhang, Weike</au><au>Zhang, Qi</au><au>Liu, Jiaqin</au><au>Li, Zhanfeng</au><au>Tian, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network</atitle><jtitle>Energy & environmental science</jtitle><date>2022-12-07</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>5059</spage><epage>5068</epage><pages>5059-5068</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Carrier recombination involved in polymeric photocatalysts includes undissociated exciton decay and charge recombination, which are the major hindrance limiting their photocatalytic activities. Realizing highly efficient charge generation and separation simultaneously in one polymeric system is therefore a fundamental strategy for the potential success of solar-to-hydrogen conversion but remains a great challenge. Here, we develop a large π-delocalized direct Z-scheme polymeric heterostructure (g-C
3
N
4
/P1Cl-T) that synergistically integrates a two-dimensional (2D) donor–acceptor conjugated polymer (P1Cl-T) with g-C
3
N
4
. We demonstrate that the intermolecular π–π stacking successfully rebuilds the extended π-network over the whole polymeric heterojunction, thus facilitating full-visible-light absorption, exciton dissociation and charge transport. The combination of spectroscopic analysis and theoretical calculations reveals that both resonance energy transfer and Z-scheme charge transfer occur upon light illumination. With the intense synergy among the large π-delocalization, π–π stacking interactions and internal electric field, the g-C
3
N
4
/P1Cl-T photocatalyst shows an unprecedentedly high hydrogen evolution rate of ∼111.8 mmol h
−1
g
−1
with apparent quantum yields (AQYs) of 46.75% at 475 nm and 1.77% at 700 nm, which is about 48-fold higher than that of pristine g-C
3
N
4
and tops those for all the previously reported polymer-based photocatalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2EE02380F</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5127-2928</orcidid><orcidid>https://orcid.org/0000-0002-1752-6514</orcidid><orcidid>https://orcid.org/0000-0003-1663-7447</orcidid><orcidid>https://orcid.org/0000-0001-6340-0130</orcidid><orcidid>https://orcid.org/0000-0001-8279-9335</orcidid><orcidid>https://orcid.org/0000-0003-4613-4795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-12, Vol.15 (12), p.5059-5068 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2747205337 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon nitride Carrier recombination Charge transfer Charge transport Electric fields Electromagnetic absorption Energy charge Energy transfer Excitons Heterojunctions Heterostructures Hydrogen Hydrogen evolution Hydrogen production Photocatalysis Photocatalysts Polymers Recombination Stacking |
title | Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production via a rebuilt extended π-delocalized network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Z-scheme%20polymeric%20heterojunction%20boosts%20photocatalytic%20hydrogen%20production%20via%20a%20rebuilt%20extended%20%CF%80-delocalized%20network&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Xu,%20Linpeng&rft.date=2022-12-07&rft.volume=15&rft.issue=12&rft.spage=5059&rft.epage=5068&rft.pages=5059-5068&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE02380F&rft_dat=%3Cproquest_cross%3E2747205337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747205337&rft_id=info:pmid/&rfr_iscdi=true |