Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries

For rechargeable aqueous Zn-ion batteries (ZIBs), MnO 2 is a desirable cathode material because of its structural diversity and high theoretical capacity of ~308 mA h g −1 . MnO 2 materials’ poor cycle life and inferior conductivity, however, continue to be key obstacles to their application in ZIBs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023, Vol.52 (1), p.41-49
Hauptverfasser: Xie, Qixing, Huang, Leheng, Liang, Zijian, Tang, Shichang, Ling, Weizhao, Huang, Qingxia, Zhou, Zihao, Su, Xiaohui, Xue, Tong, Cheng, Gao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 41
container_title Journal of electronic materials
container_volume 52
creator Xie, Qixing
Huang, Leheng
Liang, Zijian
Tang, Shichang
Ling, Weizhao
Huang, Qingxia
Zhou, Zihao
Su, Xiaohui
Xue, Tong
Cheng, Gao
description For rechargeable aqueous Zn-ion batteries (ZIBs), MnO 2 is a desirable cathode material because of its structural diversity and high theoretical capacity of ~308 mA h g −1 . MnO 2 materials’ poor cycle life and inferior conductivity, however, continue to be key obstacles to their application in ZIBs. These problems are anticipated to be resolved by developing a nanocomposite system consisting of MnO 2 and a carbon-based matrix. Herein, a series of graphite carbon-coated δ -MnO 2 nanoparticles (denoted as GC- δ -MnO 2 -X; X  = 1, 2, and 3) for ZIB cathode materials is prepared via a feasible redox route and varying the amount of KMnO 4 (7, 8, and 9 mmol). Benefiting from the abundant active sites and boosted Zn 2+ ion diffusion rate, the GC- δ -MnO 2 -2 nanoparticles (8 mmol KMnO 4 ) display excellent capacity of 299.6 mA h g −1 at 0.3 A g −1 with good cycle stability (62% capacity retention after 1500 cycles at 2 A g −1 ), surpassing that of the GC- δ -MnO 2 -1 (7 mmol KMnO 4 ) and GC- δ -MnO 2 -3 (9 mmol KMnO 4 ) samples. Moreover, the constructed quasi-solid-state ZIBs based on the GC- δ -MnO 2 -2 cathode show respectable capacity of 194.3 mA h g −1 at 0.3 A g −1 , as well as outstanding safe properties.
doi_str_mv 10.1007/s11664-022-10056-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747130521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747130521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-847427747736e686416e7f042c84b63d743420d2842be5cb92ce92663a6e3be3</originalsourceid><addsrcrecordid>eNp9kN9KwzAUh4MoOKcv4FXA62j-Ne0udeo2mE5kF-JNSNPTtXM2NekE38vn8JnMrOCdcCCc8Pt-Bz6EThk9Z5SmF4ExpSShnJO4J4rIPTRgiRSEZeppHw2oUIwkXCSH6CiENaUsYRkboPeJN21Vd0Dm9QvgsfG5a8g1WOdNBwX--iR3zYLje9O41viuthsI2MTB03pVkQfwpfOvprE7uKtcATh-4EewlfErMPkG8HPdWDJzDb4yXQe-hnCMDkqzCXDy-w7R8vZmOZ6S-WIyG1_OieVy1JFMppKnqUxToUBlSjIFaUklt5nMlShSKSSnBc8kzyGx-YhbGHGlhFEgchBDdNbXtt69bSF0eu22vokXNY-tTNCEs5jifcp6F4KHUre-fjX-QzOqd3p1r1dHvfpHr5YREj0UYrhZgf-r_of6BuLNfMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747130521</pqid></control><display><type>article</type><title>Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Xie, Qixing ; Huang, Leheng ; Liang, Zijian ; Tang, Shichang ; Ling, Weizhao ; Huang, Qingxia ; Zhou, Zihao ; Su, Xiaohui ; Xue, Tong ; Cheng, Gao</creator><creatorcontrib>Xie, Qixing ; Huang, Leheng ; Liang, Zijian ; Tang, Shichang ; Ling, Weizhao ; Huang, Qingxia ; Zhou, Zihao ; Su, Xiaohui ; Xue, Tong ; Cheng, Gao</creatorcontrib><description>For rechargeable aqueous Zn-ion batteries (ZIBs), MnO 2 is a desirable cathode material because of its structural diversity and high theoretical capacity of ~308 mA h g −1 . MnO 2 materials’ poor cycle life and inferior conductivity, however, continue to be key obstacles to their application in ZIBs. These problems are anticipated to be resolved by developing a nanocomposite system consisting of MnO 2 and a carbon-based matrix. Herein, a series of graphite carbon-coated δ -MnO 2 nanoparticles (denoted as GC- δ -MnO 2 -X; X  = 1, 2, and 3) for ZIB cathode materials is prepared via a feasible redox route and varying the amount of KMnO 4 (7, 8, and 9 mmol). Benefiting from the abundant active sites and boosted Zn 2+ ion diffusion rate, the GC- δ -MnO 2 -2 nanoparticles (8 mmol KMnO 4 ) display excellent capacity of 299.6 mA h g −1 at 0.3 A g −1 with good cycle stability (62% capacity retention after 1500 cycles at 2 A g −1 ), surpassing that of the GC- δ -MnO 2 -1 (7 mmol KMnO 4 ) and GC- δ -MnO 2 -3 (9 mmol KMnO 4 ) samples. Moreover, the constructed quasi-solid-state ZIBs based on the GC- δ -MnO 2 -2 cathode show respectable capacity of 194.3 mA h g −1 at 0.3 A g −1 , as well as outstanding safe properties.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-10056-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Metal Ion Batteries ; Carbon ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion rate ; Electrode materials ; Electronics and Microelectronics ; Graphite ; Instrumentation ; Ion diffusion ; Manganese dioxide ; Materials Science ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Potassium permanganate ; Rechargeable batteries ; Solid State Physics ; Topical Collection: Advanced Metal Ion Batteries ; Zinc</subject><ispartof>Journal of electronic materials, 2023, Vol.52 (1), p.41-49</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-847427747736e686416e7f042c84b63d743420d2842be5cb92ce92663a6e3be3</citedby><cites>FETCH-LOGICAL-c249t-847427747736e686416e7f042c84b63d743420d2842be5cb92ce92663a6e3be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-10056-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-10056-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Xie, Qixing</creatorcontrib><creatorcontrib>Huang, Leheng</creatorcontrib><creatorcontrib>Liang, Zijian</creatorcontrib><creatorcontrib>Tang, Shichang</creatorcontrib><creatorcontrib>Ling, Weizhao</creatorcontrib><creatorcontrib>Huang, Qingxia</creatorcontrib><creatorcontrib>Zhou, Zihao</creatorcontrib><creatorcontrib>Su, Xiaohui</creatorcontrib><creatorcontrib>Xue, Tong</creatorcontrib><creatorcontrib>Cheng, Gao</creatorcontrib><title>Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>For rechargeable aqueous Zn-ion batteries (ZIBs), MnO 2 is a desirable cathode material because of its structural diversity and high theoretical capacity of ~308 mA h g −1 . MnO 2 materials’ poor cycle life and inferior conductivity, however, continue to be key obstacles to their application in ZIBs. These problems are anticipated to be resolved by developing a nanocomposite system consisting of MnO 2 and a carbon-based matrix. Herein, a series of graphite carbon-coated δ -MnO 2 nanoparticles (denoted as GC- δ -MnO 2 -X; X  = 1, 2, and 3) for ZIB cathode materials is prepared via a feasible redox route and varying the amount of KMnO 4 (7, 8, and 9 mmol). Benefiting from the abundant active sites and boosted Zn 2+ ion diffusion rate, the GC- δ -MnO 2 -2 nanoparticles (8 mmol KMnO 4 ) display excellent capacity of 299.6 mA h g −1 at 0.3 A g −1 with good cycle stability (62% capacity retention after 1500 cycles at 2 A g −1 ), surpassing that of the GC- δ -MnO 2 -1 (7 mmol KMnO 4 ) and GC- δ -MnO 2 -3 (9 mmol KMnO 4 ) samples. Moreover, the constructed quasi-solid-state ZIBs based on the GC- δ -MnO 2 -2 cathode show respectable capacity of 194.3 mA h g −1 at 0.3 A g −1 , as well as outstanding safe properties.</description><subject>Advanced Metal Ion Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Electronics and Microelectronics</subject><subject>Graphite</subject><subject>Instrumentation</subject><subject>Ion diffusion</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Potassium permanganate</subject><subject>Rechargeable batteries</subject><subject>Solid State Physics</subject><subject>Topical Collection: Advanced Metal Ion Batteries</subject><subject>Zinc</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kN9KwzAUh4MoOKcv4FXA62j-Ne0udeo2mE5kF-JNSNPTtXM2NekE38vn8JnMrOCdcCCc8Pt-Bz6EThk9Z5SmF4ExpSShnJO4J4rIPTRgiRSEZeppHw2oUIwkXCSH6CiENaUsYRkboPeJN21Vd0Dm9QvgsfG5a8g1WOdNBwX--iR3zYLje9O41viuthsI2MTB03pVkQfwpfOvprE7uKtcATh-4EewlfErMPkG8HPdWDJzDb4yXQe-hnCMDkqzCXDy-w7R8vZmOZ6S-WIyG1_OieVy1JFMppKnqUxToUBlSjIFaUklt5nMlShSKSSnBc8kzyGx-YhbGHGlhFEgchBDdNbXtt69bSF0eu22vokXNY-tTNCEs5jifcp6F4KHUre-fjX-QzOqd3p1r1dHvfpHr5YREj0UYrhZgf-r_of6BuLNfMg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Xie, Qixing</creator><creator>Huang, Leheng</creator><creator>Liang, Zijian</creator><creator>Tang, Shichang</creator><creator>Ling, Weizhao</creator><creator>Huang, Qingxia</creator><creator>Zhou, Zihao</creator><creator>Su, Xiaohui</creator><creator>Xue, Tong</creator><creator>Cheng, Gao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>2023</creationdate><title>Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries</title><author>Xie, Qixing ; Huang, Leheng ; Liang, Zijian ; Tang, Shichang ; Ling, Weizhao ; Huang, Qingxia ; Zhou, Zihao ; Su, Xiaohui ; Xue, Tong ; Cheng, Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-847427747736e686416e7f042c84b63d743420d2842be5cb92ce92663a6e3be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Metal Ion Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Electronics and Microelectronics</topic><topic>Graphite</topic><topic>Instrumentation</topic><topic>Ion diffusion</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Potassium permanganate</topic><topic>Rechargeable batteries</topic><topic>Solid State Physics</topic><topic>Topical Collection: Advanced Metal Ion Batteries</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Qixing</creatorcontrib><creatorcontrib>Huang, Leheng</creatorcontrib><creatorcontrib>Liang, Zijian</creatorcontrib><creatorcontrib>Tang, Shichang</creatorcontrib><creatorcontrib>Ling, Weizhao</creatorcontrib><creatorcontrib>Huang, Qingxia</creatorcontrib><creatorcontrib>Zhou, Zihao</creatorcontrib><creatorcontrib>Su, Xiaohui</creatorcontrib><creatorcontrib>Xue, Tong</creatorcontrib><creatorcontrib>Cheng, Gao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Qixing</au><au>Huang, Leheng</au><au>Liang, Zijian</au><au>Tang, Shichang</au><au>Ling, Weizhao</au><au>Huang, Qingxia</au><au>Zhou, Zihao</au><au>Su, Xiaohui</au><au>Xue, Tong</au><au>Cheng, Gao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>41</spage><epage>49</epage><pages>41-49</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>For rechargeable aqueous Zn-ion batteries (ZIBs), MnO 2 is a desirable cathode material because of its structural diversity and high theoretical capacity of ~308 mA h g −1 . MnO 2 materials’ poor cycle life and inferior conductivity, however, continue to be key obstacles to their application in ZIBs. These problems are anticipated to be resolved by developing a nanocomposite system consisting of MnO 2 and a carbon-based matrix. Herein, a series of graphite carbon-coated δ -MnO 2 nanoparticles (denoted as GC- δ -MnO 2 -X; X  = 1, 2, and 3) for ZIB cathode materials is prepared via a feasible redox route and varying the amount of KMnO 4 (7, 8, and 9 mmol). Benefiting from the abundant active sites and boosted Zn 2+ ion diffusion rate, the GC- δ -MnO 2 -2 nanoparticles (8 mmol KMnO 4 ) display excellent capacity of 299.6 mA h g −1 at 0.3 A g −1 with good cycle stability (62% capacity retention after 1500 cycles at 2 A g −1 ), surpassing that of the GC- δ -MnO 2 -1 (7 mmol KMnO 4 ) and GC- δ -MnO 2 -3 (9 mmol KMnO 4 ) samples. Moreover, the constructed quasi-solid-state ZIBs based on the GC- δ -MnO 2 -2 cathode show respectable capacity of 194.3 mA h g −1 at 0.3 A g −1 , as well as outstanding safe properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-10056-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023, Vol.52 (1), p.41-49
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2747130521
source Springer Nature - Complete Springer Journals
subjects Advanced Metal Ion Batteries
Carbon
Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diffusion rate
Electrode materials
Electronics and Microelectronics
Graphite
Instrumentation
Ion diffusion
Manganese dioxide
Materials Science
Nanocomposites
Nanoparticles
Optical and Electronic Materials
Potassium permanganate
Rechargeable batteries
Solid State Physics
Topical Collection: Advanced Metal Ion Batteries
Zinc
title Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite-Like%20Carbon-Decorated%20%CE%B4-MnO2%20Nanoparticles%20as%20a%20High-Performance%20Cathode%20for%20Rechargeable%20Zinc-Ion%20Batteries&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Xie,%20Qixing&rft.date=2023&rft.volume=52&rft.issue=1&rft.spage=41&rft.epage=49&rft.pages=41-49&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-10056-4&rft_dat=%3Cproquest_cross%3E2747130521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747130521&rft_id=info:pmid/&rfr_iscdi=true