BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning
Training a generative model on a single image has drawn significant attention in recent years. Single image generative methods are designed to learn the internal patch distribution of a single natural image at multiple scales. These models can be used for drawing diverse samples that semantically re...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kligvasser, Idan Tamar Rott Shaham Alkobi, Noa Michaeli, Tomer |
description | Training a generative model on a single image has drawn significant attention in recent years. Single image generative methods are designed to learn the internal patch distribution of a single natural image at multiple scales. These models can be used for drawing diverse samples that semantically resemble the training image, as well as for solving many image editing and restoration tasks that involve that particular image. Here, we introduce an extended framework, which allows to simultaneously learn the internal distributions of several images, by using a single model with spatially varying image-identity conditioning. Our BlendGAN opens the door to applications that are not supported by single-image models, including morphing, melding, and structure-texture fusion between two or more arbitrary images. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747128766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747128766</sourcerecordid><originalsourceid>FETCH-proquest_journals_27471287663</originalsourceid><addsrcrecordid>eNqNzcsKgzAQBdBQKFRa_2Gga0Hjk-5a-4TSjd1LxGgjaWKTuPDvG6Uf0NUwl3NnFsjBYRh4WYTxCrlad77v4yTFcRw6SB04FfVl_9jBnRIlmGiBiBrmeFrMi8JNGKoE4XBk2ihWDYZJoUE2UFjCLXiTlmqoRih6YpiVc-LdaioMMyPk0l6bWtZv0LIhXFP3N9doez4986vXK_kZqDZlJ4fpnS5xGqUBztIkCf9TX97DStw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747128766</pqid></control><display><type>article</type><title>BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning</title><source>Free E- Journals</source><creator>Kligvasser, Idan ; Tamar Rott Shaham ; Alkobi, Noa ; Michaeli, Tomer</creator><creatorcontrib>Kligvasser, Idan ; Tamar Rott Shaham ; Alkobi, Noa ; Michaeli, Tomer</creatorcontrib><description>Training a generative model on a single image has drawn significant attention in recent years. Single image generative methods are designed to learn the internal patch distribution of a single natural image at multiple scales. These models can be used for drawing diverse samples that semantically resemble the training image, as well as for solving many image editing and restoration tasks that involve that particular image. Here, we introduce an extended framework, which allows to simultaneously learn the internal distributions of several images, by using a single model with spatially varying image-identity conditioning. Our BlendGAN opens the door to applications that are not supported by single-image models, including morphing, melding, and structure-texture fusion between two or more arbitrary images.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Morphing ; Training</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kligvasser, Idan</creatorcontrib><creatorcontrib>Tamar Rott Shaham</creatorcontrib><creatorcontrib>Alkobi, Noa</creatorcontrib><creatorcontrib>Michaeli, Tomer</creatorcontrib><title>BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning</title><title>arXiv.org</title><description>Training a generative model on a single image has drawn significant attention in recent years. Single image generative methods are designed to learn the internal patch distribution of a single natural image at multiple scales. These models can be used for drawing diverse samples that semantically resemble the training image, as well as for solving many image editing and restoration tasks that involve that particular image. Here, we introduce an extended framework, which allows to simultaneously learn the internal distributions of several images, by using a single model with spatially varying image-identity conditioning. Our BlendGAN opens the door to applications that are not supported by single-image models, including morphing, melding, and structure-texture fusion between two or more arbitrary images.</description><subject>Morphing</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzcsKgzAQBdBQKFRa_2Gga0Hjk-5a-4TSjd1LxGgjaWKTuPDvG6Uf0NUwl3NnFsjBYRh4WYTxCrlad77v4yTFcRw6SB04FfVl_9jBnRIlmGiBiBrmeFrMi8JNGKoE4XBk2ihWDYZJoUE2UFjCLXiTlmqoRih6YpiVc-LdaioMMyPk0l6bWtZv0LIhXFP3N9doez4986vXK_kZqDZlJ4fpnS5xGqUBztIkCf9TX97DStw</recordid><startdate>20221203</startdate><enddate>20221203</enddate><creator>Kligvasser, Idan</creator><creator>Tamar Rott Shaham</creator><creator>Alkobi, Noa</creator><creator>Michaeli, Tomer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221203</creationdate><title>BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning</title><author>Kligvasser, Idan ; Tamar Rott Shaham ; Alkobi, Noa ; Michaeli, Tomer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27471287663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Morphing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kligvasser, Idan</creatorcontrib><creatorcontrib>Tamar Rott Shaham</creatorcontrib><creatorcontrib>Alkobi, Noa</creatorcontrib><creatorcontrib>Michaeli, Tomer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kligvasser, Idan</au><au>Tamar Rott Shaham</au><au>Alkobi, Noa</au><au>Michaeli, Tomer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning</atitle><jtitle>arXiv.org</jtitle><date>2022-12-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Training a generative model on a single image has drawn significant attention in recent years. Single image generative methods are designed to learn the internal patch distribution of a single natural image at multiple scales. These models can be used for drawing diverse samples that semantically resemble the training image, as well as for solving many image editing and restoration tasks that involve that particular image. Here, we introduce an extended framework, which allows to simultaneously learn the internal distributions of several images, by using a single model with spatially varying image-identity conditioning. Our BlendGAN opens the door to applications that are not supported by single-image models, including morphing, melding, and structure-texture fusion between two or more arbitrary images.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2747128766 |
source | Free E- Journals |
subjects | Morphing Training |
title | BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=BlendGAN:%20Learning%20and%20Blending%20the%20Internal%20Distributions%20of%20Single%20Images%20by%20Spatial%20Image-Identity%20Conditioning&rft.jtitle=arXiv.org&rft.au=Kligvasser,%20Idan&rft.date=2022-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747128766%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747128766&rft_id=info:pmid/&rfr_iscdi=true |