Machine learning assisted determination of electronic correlations from magnetic resonance
In the presence of strong electronic spin correlations, the hyperfine interaction imparts long-range coupling between nuclear spins. Efficient protocols for the extraction of such complex information about electron correlations via magnetic response are not well known. Here, we study how machine lea...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rao, Anantha Carr, Stephen Snider, Charles Feldman, D E Ramanathan, Chandrasekhar Mitrović, V F |
description | In the presence of strong electronic spin correlations, the hyperfine interaction imparts long-range coupling between nuclear spins. Efficient protocols for the extraction of such complex information about electron correlations via magnetic response are not well known. Here, we study how machine learning can extract material parameters and help interpret magnetic response experiments. A low-dimensional representation that classifies the total interaction strength is discovered by unsupervised learning. Supervised learning generates models that predict the spatial extent of electronic correlations and the total interaction strength. Our work demonstrates the utility of artificial intelligence in the development of new probes of quantum systems, with applications to experimental studies of strongly correlated materials. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747126573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747126573</sourcerecordid><originalsourceid>FETCH-proquest_journals_27471265733</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC23SNu6iuLg5uZQQrzUlvehd-v4W8QGc_uH7VyJTWlfFoVZqI3LmsSxL1RrVNDoT96t1T48gA1hCj4O0zJ4TPOQDEtDk0SYfUcZeQgCXKKJ30kUiCF9h2VOc5GQHhLQQAUe06GAn1r0NDPmvW7E_n27HS_Gi-J6BUzfGmXChTpnaVKptjNb_XR_ZL0P7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747126573</pqid></control><display><type>article</type><title>Machine learning assisted determination of electronic correlations from magnetic resonance</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Rao, Anantha ; Carr, Stephen ; Snider, Charles ; Feldman, D E ; Ramanathan, Chandrasekhar ; Mitrović, V F</creator><creatorcontrib>Rao, Anantha ; Carr, Stephen ; Snider, Charles ; Feldman, D E ; Ramanathan, Chandrasekhar ; Mitrović, V F</creatorcontrib><description>In the presence of strong electronic spin correlations, the hyperfine interaction imparts long-range coupling between nuclear spins. Efficient protocols for the extraction of such complex information about electron correlations via magnetic response are not well known. Here, we study how machine learning can extract material parameters and help interpret magnetic response experiments. A low-dimensional representation that classifies the total interaction strength is discovered by unsupervised learning. Supervised learning generates models that predict the spatial extent of electronic correlations and the total interaction strength. Our work demonstrates the utility of artificial intelligence in the development of new probes of quantum systems, with applications to experimental studies of strongly correlated materials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Electron spin ; Machine learning ; Magnetic resonance</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rao, Anantha</creatorcontrib><creatorcontrib>Carr, Stephen</creatorcontrib><creatorcontrib>Snider, Charles</creatorcontrib><creatorcontrib>Feldman, D E</creatorcontrib><creatorcontrib>Ramanathan, Chandrasekhar</creatorcontrib><creatorcontrib>Mitrović, V F</creatorcontrib><title>Machine learning assisted determination of electronic correlations from magnetic resonance</title><title>arXiv.org</title><description>In the presence of strong electronic spin correlations, the hyperfine interaction imparts long-range coupling between nuclear spins. Efficient protocols for the extraction of such complex information about electron correlations via magnetic response are not well known. Here, we study how machine learning can extract material parameters and help interpret magnetic response experiments. A low-dimensional representation that classifies the total interaction strength is discovered by unsupervised learning. Supervised learning generates models that predict the spatial extent of electronic correlations and the total interaction strength. Our work demonstrates the utility of artificial intelligence in the development of new probes of quantum systems, with applications to experimental studies of strongly correlated materials.</description><subject>Artificial intelligence</subject><subject>Electron spin</subject><subject>Machine learning</subject><subject>Magnetic resonance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC23SNu6iuLg5uZQQrzUlvehd-v4W8QGc_uH7VyJTWlfFoVZqI3LmsSxL1RrVNDoT96t1T48gA1hCj4O0zJ4TPOQDEtDk0SYfUcZeQgCXKKJ30kUiCF9h2VOc5GQHhLQQAUe06GAn1r0NDPmvW7E_n27HS_Gi-J6BUzfGmXChTpnaVKptjNb_XR_ZL0P7</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Rao, Anantha</creator><creator>Carr, Stephen</creator><creator>Snider, Charles</creator><creator>Feldman, D E</creator><creator>Ramanathan, Chandrasekhar</creator><creator>Mitrović, V F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230509</creationdate><title>Machine learning assisted determination of electronic correlations from magnetic resonance</title><author>Rao, Anantha ; Carr, Stephen ; Snider, Charles ; Feldman, D E ; Ramanathan, Chandrasekhar ; Mitrović, V F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27471265733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Electron spin</topic><topic>Machine learning</topic><topic>Magnetic resonance</topic><toplevel>online_resources</toplevel><creatorcontrib>Rao, Anantha</creatorcontrib><creatorcontrib>Carr, Stephen</creatorcontrib><creatorcontrib>Snider, Charles</creatorcontrib><creatorcontrib>Feldman, D E</creatorcontrib><creatorcontrib>Ramanathan, Chandrasekhar</creatorcontrib><creatorcontrib>Mitrović, V F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Anantha</au><au>Carr, Stephen</au><au>Snider, Charles</au><au>Feldman, D E</au><au>Ramanathan, Chandrasekhar</au><au>Mitrović, V F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine learning assisted determination of electronic correlations from magnetic resonance</atitle><jtitle>arXiv.org</jtitle><date>2023-05-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In the presence of strong electronic spin correlations, the hyperfine interaction imparts long-range coupling between nuclear spins. Efficient protocols for the extraction of such complex information about electron correlations via magnetic response are not well known. Here, we study how machine learning can extract material parameters and help interpret magnetic response experiments. A low-dimensional representation that classifies the total interaction strength is discovered by unsupervised learning. Supervised learning generates models that predict the spatial extent of electronic correlations and the total interaction strength. Our work demonstrates the utility of artificial intelligence in the development of new probes of quantum systems, with applications to experimental studies of strongly correlated materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2747126573 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Artificial intelligence Electron spin Machine learning Magnetic resonance |
title | Machine learning assisted determination of electronic correlations from magnetic resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20learning%20assisted%20determination%20of%20electronic%20correlations%20from%20magnetic%20resonance&rft.jtitle=arXiv.org&rft.au=Rao,%20Anantha&rft.date=2023-05-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747126573%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747126573&rft_id=info:pmid/&rfr_iscdi=true |