AdaCM: Adaptive ColorMLP for Real-Time Universal Photo-realistic Style Transfer

Photo-realistic style transfer aims at migrating the artistic style from an exemplar style image to a content image, producing a result image without spatial distortions or unrealistic artifacts. Impressive results have been achieved by recent deep models. However, deep neural network based methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Lin, Tianwei, Lin, Honglin, Fu, Li, He, Dongliang, Wu, Wenhao, Wang, Meiling, Li, Xin, Liu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lin, Tianwei
Lin, Honglin
Fu, Li
He, Dongliang
Wu, Wenhao
Wang, Meiling
Li, Xin
Liu, Yong
description Photo-realistic style transfer aims at migrating the artistic style from an exemplar style image to a content image, producing a result image without spatial distortions or unrealistic artifacts. Impressive results have been achieved by recent deep models. However, deep neural network based methods are too expensive to run in real-time. Meanwhile, bilateral grid based methods are much faster but still contain artifacts like overexposure. In this work, we propose the \textbf{Adaptive ColorMLP (AdaCM)}, an effective and efficient framework for universal photo-realistic style transfer. First, we find the complex non-linear color mapping between input and target domain can be efficiently modeled by a small multi-layer perceptron (ColorMLP) model. Then, in \textbf{AdaCM}, we adopt a CNN encoder to adaptively predict all parameters for the ColorMLP conditioned on each input content and style image pair. Experimental results demonstrate that AdaCM can generate vivid and high-quality stylization results. Meanwhile, our AdaCM is ultrafast and can process a 4K resolution image in 6ms on one V100 GPU.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747126281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747126281</sourcerecordid><originalsourceid>FETCH-proquest_journals_27471262813</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScA-1N_3CTojhYLFrnEjTFlNjUm1Tw7c3gAzid4TszEgDnMSsSgAUJre2jKIIshzTlATlt76KsNtRndOotaWm0wepY084gPUuhWaOekl4Hj2iFpvXDOMPQi7JO3ejFfbSkDYrBdhJXZN4JbWX465Ks97umPLARzWuS1rW9mXDw1EKe5DFkUMT8v-sLcyk9lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747126281</pqid></control><display><type>article</type><title>AdaCM: Adaptive ColorMLP for Real-Time Universal Photo-realistic Style Transfer</title><source>Free E- Journals</source><creator>Lin, Tianwei ; Lin, Honglin ; Fu, Li ; He, Dongliang ; Wu, Wenhao ; Wang, Meiling ; Li, Xin ; Liu, Yong</creator><creatorcontrib>Lin, Tianwei ; Lin, Honglin ; Fu, Li ; He, Dongliang ; Wu, Wenhao ; Wang, Meiling ; Li, Xin ; Liu, Yong</creatorcontrib><description>Photo-realistic style transfer aims at migrating the artistic style from an exemplar style image to a content image, producing a result image without spatial distortions or unrealistic artifacts. Impressive results have been achieved by recent deep models. However, deep neural network based methods are too expensive to run in real-time. Meanwhile, bilateral grid based methods are much faster but still contain artifacts like overexposure. In this work, we propose the \textbf{Adaptive ColorMLP (AdaCM)}, an effective and efficient framework for universal photo-realistic style transfer. First, we find the complex non-linear color mapping between input and target domain can be efficiently modeled by a small multi-layer perceptron (ColorMLP) model. Then, in \textbf{AdaCM}, we adopt a CNN encoder to adaptively predict all parameters for the ColorMLP conditioned on each input content and style image pair. Experimental results demonstrate that AdaCM can generate vivid and high-quality stylization results. Meanwhile, our AdaCM is ultrafast and can process a 4K resolution image in 6ms on one V100 GPU.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Coders ; Multilayer perceptrons ; Multilayers ; Real time</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Lin, Tianwei</creatorcontrib><creatorcontrib>Lin, Honglin</creatorcontrib><creatorcontrib>Fu, Li</creatorcontrib><creatorcontrib>He, Dongliang</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Wang, Meiling</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>AdaCM: Adaptive ColorMLP for Real-Time Universal Photo-realistic Style Transfer</title><title>arXiv.org</title><description>Photo-realistic style transfer aims at migrating the artistic style from an exemplar style image to a content image, producing a result image without spatial distortions or unrealistic artifacts. Impressive results have been achieved by recent deep models. However, deep neural network based methods are too expensive to run in real-time. Meanwhile, bilateral grid based methods are much faster but still contain artifacts like overexposure. In this work, we propose the \textbf{Adaptive ColorMLP (AdaCM)}, an effective and efficient framework for universal photo-realistic style transfer. First, we find the complex non-linear color mapping between input and target domain can be efficiently modeled by a small multi-layer perceptron (ColorMLP) model. Then, in \textbf{AdaCM}, we adopt a CNN encoder to adaptively predict all parameters for the ColorMLP conditioned on each input content and style image pair. Experimental results demonstrate that AdaCM can generate vivid and high-quality stylization results. Meanwhile, our AdaCM is ultrafast and can process a 4K resolution image in 6ms on one V100 GPU.</description><subject>Artificial neural networks</subject><subject>Coders</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Real time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScA-1N_3CTojhYLFrnEjTFlNjUm1Tw7c3gAzid4TszEgDnMSsSgAUJre2jKIIshzTlATlt76KsNtRndOotaWm0wepY084gPUuhWaOekl4Hj2iFpvXDOMPQi7JO3ejFfbSkDYrBdhJXZN4JbWX465Ks97umPLARzWuS1rW9mXDw1EKe5DFkUMT8v-sLcyk9lw</recordid><startdate>20221203</startdate><enddate>20221203</enddate><creator>Lin, Tianwei</creator><creator>Lin, Honglin</creator><creator>Fu, Li</creator><creator>He, Dongliang</creator><creator>Wu, Wenhao</creator><creator>Wang, Meiling</creator><creator>Li, Xin</creator><creator>Liu, Yong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221203</creationdate><title>AdaCM: Adaptive ColorMLP for Real-Time Universal Photo-realistic Style Transfer</title><author>Lin, Tianwei ; Lin, Honglin ; Fu, Li ; He, Dongliang ; Wu, Wenhao ; Wang, Meiling ; Li, Xin ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27471262813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Coders</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Real time</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tianwei</creatorcontrib><creatorcontrib>Lin, Honglin</creatorcontrib><creatorcontrib>Fu, Li</creatorcontrib><creatorcontrib>He, Dongliang</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Wang, Meiling</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tianwei</au><au>Lin, Honglin</au><au>Fu, Li</au><au>He, Dongliang</au><au>Wu, Wenhao</au><au>Wang, Meiling</au><au>Li, Xin</au><au>Liu, Yong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AdaCM: Adaptive ColorMLP for Real-Time Universal Photo-realistic Style Transfer</atitle><jtitle>arXiv.org</jtitle><date>2022-12-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Photo-realistic style transfer aims at migrating the artistic style from an exemplar style image to a content image, producing a result image without spatial distortions or unrealistic artifacts. Impressive results have been achieved by recent deep models. However, deep neural network based methods are too expensive to run in real-time. Meanwhile, bilateral grid based methods are much faster but still contain artifacts like overexposure. In this work, we propose the \textbf{Adaptive ColorMLP (AdaCM)}, an effective and efficient framework for universal photo-realistic style transfer. First, we find the complex non-linear color mapping between input and target domain can be efficiently modeled by a small multi-layer perceptron (ColorMLP) model. Then, in \textbf{AdaCM}, we adopt a CNN encoder to adaptively predict all parameters for the ColorMLP conditioned on each input content and style image pair. Experimental results demonstrate that AdaCM can generate vivid and high-quality stylization results. Meanwhile, our AdaCM is ultrafast and can process a 4K resolution image in 6ms on one V100 GPU.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2747126281
source Free E- Journals
subjects Artificial neural networks
Coders
Multilayer perceptrons
Multilayers
Real time
title AdaCM: Adaptive ColorMLP for Real-Time Universal Photo-realistic Style Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AdaCM:%20Adaptive%20ColorMLP%20for%20Real-Time%20Universal%20Photo-realistic%20Style%20Transfer&rft.jtitle=arXiv.org&rft.au=Lin,%20Tianwei&rft.date=2022-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747126281%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747126281&rft_id=info:pmid/&rfr_iscdi=true