Emergent Orbital Skyrmion Lattice in a Triangular Atom Array

Multi-orbital optical lattices have been attracting rapidly growing research interests in the last several years, providing fascinating opportunities for orbital-based quantum simulations. Here, we consider bosonic atoms loaded in the degenerate \(p\)-orbital bands of a two-dimensional triangular op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Cao, Rui, Han, Jinsen, Yuan, Jianmin, Li, Xiaopeng, Li, Yongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cao, Rui
Han, Jinsen
Yuan, Jianmin
Li, Xiaopeng
Li, Yongqiang
description Multi-orbital optical lattices have been attracting rapidly growing research interests in the last several years, providing fascinating opportunities for orbital-based quantum simulations. Here, we consider bosonic atoms loaded in the degenerate \(p\)-orbital bands of a two-dimensional triangular optical lattice. This system is described by a multi-orbital Bose-Hubbard model. We find the confined atoms in this system develop spontaneous orbital polarization, which forms a chiral Skyrmion lattice pattern in a large regime of the phase diagram. This is in contrast to its spin analogue which largely requires spin-orbit couplings. The emergence of the Skyrmion lattice is confirmed in both bosonic dynamical mean-field theory (BDMFT) and exact diagonalization (ED) calculations. By analyzing the quantum tunneling induced orbital-exchange interaction in the strong interaction limit, we find the Skyrmion lattice state arises due to the interplay of \(p\)-orbital symmetry and the geometric frustration of the triangular lattice. We provide experimental consequences of the orbital Skyrmion state, that can be readily tested in cold atom experiments. Our study implies orbital-based quantum simulations could bring exotic scenarios unexpected from their spin analogue.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747125324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747125324</sourcerecordid><originalsourceid>FETCH-proquest_journals_27471253243</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivMMlziRwLeLgQgzGwcRBdnKYSorQ6rUMvL0OPoDTP3z_QkQoZZbsFeJKxN73aZrirsA8l5E4VKPmTtsAV25NoAFuz5lH4yxcKARz12AsENRsyHbTQAxlcCOUzDRvxPJBg9fxr2uxPVX18Zy82L0n7UPTu4ntlxosVJFhLlHJ_64PCik3Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747125324</pqid></control><display><type>article</type><title>Emergent Orbital Skyrmion Lattice in a Triangular Atom Array</title><source>Freely Accessible Journals</source><creator>Cao, Rui ; Han, Jinsen ; Yuan, Jianmin ; Li, Xiaopeng ; Li, Yongqiang</creator><creatorcontrib>Cao, Rui ; Han, Jinsen ; Yuan, Jianmin ; Li, Xiaopeng ; Li, Yongqiang</creatorcontrib><description>Multi-orbital optical lattices have been attracting rapidly growing research interests in the last several years, providing fascinating opportunities for orbital-based quantum simulations. Here, we consider bosonic atoms loaded in the degenerate \(p\)-orbital bands of a two-dimensional triangular optical lattice. This system is described by a multi-orbital Bose-Hubbard model. We find the confined atoms in this system develop spontaneous orbital polarization, which forms a chiral Skyrmion lattice pattern in a large regime of the phase diagram. This is in contrast to its spin analogue which largely requires spin-orbit couplings. The emergence of the Skyrmion lattice is confirmed in both bosonic dynamical mean-field theory (BDMFT) and exact diagonalization (ED) calculations. By analyzing the quantum tunneling induced orbital-exchange interaction in the strong interaction limit, we find the Skyrmion lattice state arises due to the interplay of \(p\)-orbital symmetry and the geometric frustration of the triangular lattice. We provide experimental consequences of the orbital Skyrmion state, that can be readily tested in cold atom experiments. Our study implies orbital-based quantum simulations could bring exotic scenarios unexpected from their spin analogue.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic properties ; Cold atoms ; Couplings ; Hypothetical particles ; Mean field theory ; Optical lattices ; Particle theory ; Phase diagrams ; Quantum tunnelling ; Strong interactions (field theory)</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Cao, Rui</creatorcontrib><creatorcontrib>Han, Jinsen</creatorcontrib><creatorcontrib>Yuan, Jianmin</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><title>Emergent Orbital Skyrmion Lattice in a Triangular Atom Array</title><title>arXiv.org</title><description>Multi-orbital optical lattices have been attracting rapidly growing research interests in the last several years, providing fascinating opportunities for orbital-based quantum simulations. Here, we consider bosonic atoms loaded in the degenerate \(p\)-orbital bands of a two-dimensional triangular optical lattice. This system is described by a multi-orbital Bose-Hubbard model. We find the confined atoms in this system develop spontaneous orbital polarization, which forms a chiral Skyrmion lattice pattern in a large regime of the phase diagram. This is in contrast to its spin analogue which largely requires spin-orbit couplings. The emergence of the Skyrmion lattice is confirmed in both bosonic dynamical mean-field theory (BDMFT) and exact diagonalization (ED) calculations. By analyzing the quantum tunneling induced orbital-exchange interaction in the strong interaction limit, we find the Skyrmion lattice state arises due to the interplay of \(p\)-orbital symmetry and the geometric frustration of the triangular lattice. We provide experimental consequences of the orbital Skyrmion state, that can be readily tested in cold atom experiments. Our study implies orbital-based quantum simulations could bring exotic scenarios unexpected from their spin analogue.</description><subject>Atomic properties</subject><subject>Cold atoms</subject><subject>Couplings</subject><subject>Hypothetical particles</subject><subject>Mean field theory</subject><subject>Optical lattices</subject><subject>Particle theory</subject><subject>Phase diagrams</subject><subject>Quantum tunnelling</subject><subject>Strong interactions (field theory)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAQgOHGxESivMMlziRwLeLgQgzGwcRBdnKYSorQ6rUMvL0OPoDTP3z_QkQoZZbsFeJKxN73aZrirsA8l5E4VKPmTtsAV25NoAFuz5lH4yxcKARz12AsENRsyHbTQAxlcCOUzDRvxPJBg9fxr2uxPVX18Zy82L0n7UPTu4ntlxosVJFhLlHJ_64PCik3Eg</recordid><startdate>20221204</startdate><enddate>20221204</enddate><creator>Cao, Rui</creator><creator>Han, Jinsen</creator><creator>Yuan, Jianmin</creator><creator>Li, Xiaopeng</creator><creator>Li, Yongqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221204</creationdate><title>Emergent Orbital Skyrmion Lattice in a Triangular Atom Array</title><author>Cao, Rui ; Han, Jinsen ; Yuan, Jianmin ; Li, Xiaopeng ; Li, Yongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27471253243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Cold atoms</topic><topic>Couplings</topic><topic>Hypothetical particles</topic><topic>Mean field theory</topic><topic>Optical lattices</topic><topic>Particle theory</topic><topic>Phase diagrams</topic><topic>Quantum tunnelling</topic><topic>Strong interactions (field theory)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Rui</creatorcontrib><creatorcontrib>Han, Jinsen</creatorcontrib><creatorcontrib>Yuan, Jianmin</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Li, Yongqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Rui</au><au>Han, Jinsen</au><au>Yuan, Jianmin</au><au>Li, Xiaopeng</au><au>Li, Yongqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Emergent Orbital Skyrmion Lattice in a Triangular Atom Array</atitle><jtitle>arXiv.org</jtitle><date>2022-12-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Multi-orbital optical lattices have been attracting rapidly growing research interests in the last several years, providing fascinating opportunities for orbital-based quantum simulations. Here, we consider bosonic atoms loaded in the degenerate \(p\)-orbital bands of a two-dimensional triangular optical lattice. This system is described by a multi-orbital Bose-Hubbard model. We find the confined atoms in this system develop spontaneous orbital polarization, which forms a chiral Skyrmion lattice pattern in a large regime of the phase diagram. This is in contrast to its spin analogue which largely requires spin-orbit couplings. The emergence of the Skyrmion lattice is confirmed in both bosonic dynamical mean-field theory (BDMFT) and exact diagonalization (ED) calculations. By analyzing the quantum tunneling induced orbital-exchange interaction in the strong interaction limit, we find the Skyrmion lattice state arises due to the interplay of \(p\)-orbital symmetry and the geometric frustration of the triangular lattice. We provide experimental consequences of the orbital Skyrmion state, that can be readily tested in cold atom experiments. Our study implies orbital-based quantum simulations could bring exotic scenarios unexpected from their spin analogue.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2747125324
source Freely Accessible Journals
subjects Atomic properties
Cold atoms
Couplings
Hypothetical particles
Mean field theory
Optical lattices
Particle theory
Phase diagrams
Quantum tunnelling
Strong interactions (field theory)
title Emergent Orbital Skyrmion Lattice in a Triangular Atom Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Emergent%20Orbital%20Skyrmion%20Lattice%20in%20a%20Triangular%20Atom%20Array&rft.jtitle=arXiv.org&rft.au=Cao,%20Rui&rft.date=2022-12-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747125324%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747125324&rft_id=info:pmid/&rfr_iscdi=true