Comparing paper level classifications across different methods and systems: an investigation of Nature publications
The classification of scientific literature into appropriate disciplines is an essential precondition of valid scientometric analysis and significant to the practice of research assessment. In this paper, we compared the classification of publications in Nature based on three different approaches ac...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2022-12, Vol.127 (12), p.7633-7651 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7651 |
---|---|
container_issue | 12 |
container_start_page | 7633 |
container_title | Scientometrics |
container_volume | 127 |
creator | Zhang, Lin Sun, Beibei Shu, Fei Huang, Ying |
description | The classification of scientific literature into appropriate disciplines is an essential precondition of valid scientometric analysis and significant to the practice of research assessment. In this paper, we compared the classification of publications in
Nature
based on three different approaches across three different systems. These were: Web of Science (WoS) subject categories (SCs) provided by InCites, which are based on the disciplinary affiliation of the majority of a paper’s references; Fields of Research (FoR) classification provided by Dimensions, which are derived from machine learning techniques; and subjects classification provided by Springer Nature, which are based on author-selected subject terms in the publisher’s tagging system. The results show, first, that the single category assignment in InCites is not appropriate for a large number of papers. Second, only 27% of papers share the same fields between FoR classification in Dimensions and subjects classification in Springer Nature, revealing great inconsistencies between these machine-determined versus human-judged approaches. Being aware of the characteristics and limitations of the ways we categorize research publications is important to research management. |
doi_str_mv | 10.1007/s11192-022-04352-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747039476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747039476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-49f01255656124bb6bfb23cd021ad7e0c71a1e7f660b35a437bf8c817d09e9f83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VM0japN1n8AtGLnkPaTtYs_TJpF_bfm90q3jwMYcg87yQPIZfAroExeRMAoOAJ47FSkfFEHJEFZEolXOVwTBYMhEoKEOyUnIWwYRESTC1IWPXtYLzr1nQwA3ra4BYbWjUmBGddZUbXd4Gayvch0NpZix67kbY4fvZ1vOhqGnZhxDbcxoa6bothdOsDR3tLX804eaTDVDa_aefkxJom4MXPuSQfD_fvq6fk5e3xeXX3klRc8TFJC8uAZ1me5cDTssxLW3JR1YyDqSWySoIBlDbPWSkykwpZWlUpkDUrsLBKLMnVnDv4_muKz9KbfvJdXKm5TCUTRSrzOMXnqcMXPVo9eNcav9PA9F6unuXqKFcf5GoRITFDYdi7Q_8X_Q_1DZESfs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747039476</pqid></control><display><type>article</type><title>Comparing paper level classifications across different methods and systems: an investigation of Nature publications</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Lin ; Sun, Beibei ; Shu, Fei ; Huang, Ying</creator><creatorcontrib>Zhang, Lin ; Sun, Beibei ; Shu, Fei ; Huang, Ying</creatorcontrib><description>The classification of scientific literature into appropriate disciplines is an essential precondition of valid scientometric analysis and significant to the practice of research assessment. In this paper, we compared the classification of publications in
Nature
based on three different approaches across three different systems. These were: Web of Science (WoS) subject categories (SCs) provided by InCites, which are based on the disciplinary affiliation of the majority of a paper’s references; Fields of Research (FoR) classification provided by Dimensions, which are derived from machine learning techniques; and subjects classification provided by Springer Nature, which are based on author-selected subject terms in the publisher’s tagging system. The results show, first, that the single category assignment in InCites is not appropriate for a large number of papers. Second, only 27% of papers share the same fields between FoR classification in Dimensions and subjects classification in Springer Nature, revealing great inconsistencies between these machine-determined versus human-judged approaches. Being aware of the characteristics and limitations of the ways we categorize research publications is important to research management.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-022-04352-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classification ; Computer Science ; Information Storage and Retrieval ; Library Science ; Machine learning ; Marking and tracking techniques ; Research management ; Scientific papers ; Scientometrics</subject><ispartof>Scientometrics, 2022-12, Vol.127 (12), p.7633-7651</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2022</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-49f01255656124bb6bfb23cd021ad7e0c71a1e7f660b35a437bf8c817d09e9f83</citedby><cites>FETCH-LOGICAL-c282t-49f01255656124bb6bfb23cd021ad7e0c71a1e7f660b35a437bf8c817d09e9f83</cites><orcidid>0000-0003-0526-9677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-022-04352-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-022-04352-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Beibei</creatorcontrib><creatorcontrib>Shu, Fei</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><title>Comparing paper level classifications across different methods and systems: an investigation of Nature publications</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>The classification of scientific literature into appropriate disciplines is an essential precondition of valid scientometric analysis and significant to the practice of research assessment. In this paper, we compared the classification of publications in
Nature
based on three different approaches across three different systems. These were: Web of Science (WoS) subject categories (SCs) provided by InCites, which are based on the disciplinary affiliation of the majority of a paper’s references; Fields of Research (FoR) classification provided by Dimensions, which are derived from machine learning techniques; and subjects classification provided by Springer Nature, which are based on author-selected subject terms in the publisher’s tagging system. The results show, first, that the single category assignment in InCites is not appropriate for a large number of papers. Second, only 27% of papers share the same fields between FoR classification in Dimensions and subjects classification in Springer Nature, revealing great inconsistencies between these machine-determined versus human-judged approaches. Being aware of the characteristics and limitations of the ways we categorize research publications is important to research management.</description><subject>Classification</subject><subject>Computer Science</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Machine learning</subject><subject>Marking and tracking techniques</subject><subject>Research management</subject><subject>Scientific papers</subject><subject>Scientometrics</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VM0japN1n8AtGLnkPaTtYs_TJpF_bfm90q3jwMYcg87yQPIZfAroExeRMAoOAJ47FSkfFEHJEFZEolXOVwTBYMhEoKEOyUnIWwYRESTC1IWPXtYLzr1nQwA3ra4BYbWjUmBGddZUbXd4Gayvch0NpZix67kbY4fvZ1vOhqGnZhxDbcxoa6bothdOsDR3tLX804eaTDVDa_aefkxJom4MXPuSQfD_fvq6fk5e3xeXX3klRc8TFJC8uAZ1me5cDTssxLW3JR1YyDqSWySoIBlDbPWSkykwpZWlUpkDUrsLBKLMnVnDv4_muKz9KbfvJdXKm5TCUTRSrzOMXnqcMXPVo9eNcav9PA9F6unuXqKFcf5GoRITFDYdi7Q_8X_Q_1DZESfs8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Lin</creator><creator>Sun, Beibei</creator><creator>Shu, Fei</creator><creator>Huang, Ying</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0003-0526-9677</orcidid></search><sort><creationdate>20221201</creationdate><title>Comparing paper level classifications across different methods and systems: an investigation of Nature publications</title><author>Zhang, Lin ; Sun, Beibei ; Shu, Fei ; Huang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-49f01255656124bb6bfb23cd021ad7e0c71a1e7f660b35a437bf8c817d09e9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Computer Science</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Machine learning</topic><topic>Marking and tracking techniques</topic><topic>Research management</topic><topic>Scientific papers</topic><topic>Scientometrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Beibei</creatorcontrib><creatorcontrib>Shu, Fei</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lin</au><au>Sun, Beibei</au><au>Shu, Fei</au><au>Huang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing paper level classifications across different methods and systems: an investigation of Nature publications</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>127</volume><issue>12</issue><spage>7633</spage><epage>7651</epage><pages>7633-7651</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>The classification of scientific literature into appropriate disciplines is an essential precondition of valid scientometric analysis and significant to the practice of research assessment. In this paper, we compared the classification of publications in
Nature
based on three different approaches across three different systems. These were: Web of Science (WoS) subject categories (SCs) provided by InCites, which are based on the disciplinary affiliation of the majority of a paper’s references; Fields of Research (FoR) classification provided by Dimensions, which are derived from machine learning techniques; and subjects classification provided by Springer Nature, which are based on author-selected subject terms in the publisher’s tagging system. The results show, first, that the single category assignment in InCites is not appropriate for a large number of papers. Second, only 27% of papers share the same fields between FoR classification in Dimensions and subjects classification in Springer Nature, revealing great inconsistencies between these machine-determined versus human-judged approaches. Being aware of the characteristics and limitations of the ways we categorize research publications is important to research management.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-022-04352-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0526-9677</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2022-12, Vol.127 (12), p.7633-7651 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_2747039476 |
source | Springer Nature - Complete Springer Journals |
subjects | Classification Computer Science Information Storage and Retrieval Library Science Machine learning Marking and tracking techniques Research management Scientific papers Scientometrics |
title | Comparing paper level classifications across different methods and systems: an investigation of Nature publications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20paper%20level%20classifications%20across%20different%20methods%20and%20systems:%20an%20investigation%20of%20Nature%20publications&rft.jtitle=Scientometrics&rft.au=Zhang,%20Lin&rft.date=2022-12-01&rft.volume=127&rft.issue=12&rft.spage=7633&rft.epage=7651&rft.pages=7633-7651&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-022-04352-3&rft_dat=%3Cproquest_cross%3E2747039476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747039476&rft_id=info:pmid/&rfr_iscdi=true |