Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN− into N2

Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-12, Vol.134 (50), p.n/a
Hauptverfasser: Tian, Lei, Zhang, Long‐Shuai, Zheng, Ling‐Ling, Chen, Ying, Ding, Lin, Fan, Jie‐Ping, Wu, Dai‐She, Zou, Jian‐Ping, Luo, Sheng‐Lian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Tian, Lei
Zhang, Long‐Shuai
Zheng, Ling‐Ling
Chen, Ying
Ding, Lin
Fan, Jie‐Ping
Wu, Dai‐She
Zou, Jian‐Ping
Luo, Sheng‐Lian
description Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN−) at the cathode and then converting the generated reduction products into nitrogen (N2) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN− and cathode, inducing the preferential enrichment of CN− to the cathode. CN− is hydrogenated by atomic hydrogen at the cathode to methylamine/ammonia, which are further oxidized into N2 by free chlorine derived from the anode. This paper provides a new idea for realizing the unconventional and unrealizable reactions in the electrocatalytic system. Electrostatic interaction could severely inhibit the selective conversion of ions. This work proposes a strategy to overcome electrostatic interaction via strong complexation, realizing the preferential hydrogenation of cyanide at the cathode, and then oxidizing the reduction products into nitrogen at the anode. The controlled mass transfer of ions provides more possibilities for their selective conversion in the electrocatalytic system.
doi_str_mv 10.1002/ange.202214145
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2746811508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746811508</sourcerecordid><originalsourceid>FETCH-LOGICAL-p785-455d0cb264156c614085c92df0c07e96b4c8b32593413c3a3d91cef8cffd7d93</originalsourceid><addsrcrecordid>eNo9kM9OwkAQhzdGExG9et7Ec3H2X9s9kgaBhEAi3jfLdotLSrduC8obcPYRfRKLGE6Tmfl-M8mH0COBAQGgz7pa2wEFSgknXFyhHhGURCwRyTXqAXAepZTLW3TXNBsAiGkie6hc7G0wfuuqNR6V1rTBN61uncHTqrVBm9b5Cu-dxstu1UGZ39al_dJ_88IHPHHr9_KAl_aUdnuLX22-O8d8gbP5z_Ebu6r1eE7v0U2hy8Y-_Nc-Wr6M3rJJNFuMp9lwFtVJKiIuRA5mRWNORGxiwiEVRtK8AAOJlfGKm3TFqJCME2aYZrkkxhapKYo8ySXro6fz1Tr4j51tWrXxu1B1DxVNeJwSIiDtKHmmPl1pD6oObqvDQRFQJ5nqJFNdZKrhfDy6dOwXGPBsaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746811508</pqid></control><display><type>article</type><title>Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN− into N2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Lei ; Zhang, Long‐Shuai ; Zheng, Ling‐Ling ; Chen, Ying ; Ding, Lin ; Fan, Jie‐Ping ; Wu, Dai‐She ; Zou, Jian‐Ping ; Luo, Sheng‐Lian</creator><creatorcontrib>Tian, Lei ; Zhang, Long‐Shuai ; Zheng, Ling‐Ling ; Chen, Ying ; Ding, Lin ; Fan, Jie‐Ping ; Wu, Dai‐She ; Zou, Jian‐Ping ; Luo, Sheng‐Lian</creatorcontrib><description>Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN−) at the cathode and then converting the generated reduction products into nitrogen (N2) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN− and cathode, inducing the preferential enrichment of CN− to the cathode. CN− is hydrogenated by atomic hydrogen at the cathode to methylamine/ammonia, which are further oxidized into N2 by free chlorine derived from the anode. This paper provides a new idea for realizing the unconventional and unrealizable reactions in the electrocatalytic system. Electrostatic interaction could severely inhibit the selective conversion of ions. This work proposes a strategy to overcome electrostatic interaction via strong complexation, realizing the preferential hydrogenation of cyanide at the cathode, and then oxidizing the reduction products into nitrogen at the anode. The controlled mass transfer of ions provides more possibilities for their selective conversion in the electrocatalytic system.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202214145</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Anions ; Cathodes ; Cathodic polarization ; Cations ; Chemical reduction ; Chemisorption ; Chemistry ; Chlorine ; Complexation ; Cyanide ; Cyanides ; Electric fields ; Electrocatalytic System ; Electrode polarization ; Electrostatic Interaction ; Electrostatic properties ; Hydrogenation ; Methylamine ; Nitrogen ; Oxidation ; Transition metal oxides</subject><ispartof>Angewandte Chemie, 2022-12, Vol.134 (50), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3585-6541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202214145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202214145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tian, Lei</creatorcontrib><creatorcontrib>Zhang, Long‐Shuai</creatorcontrib><creatorcontrib>Zheng, Ling‐Ling</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Fan, Jie‐Ping</creatorcontrib><creatorcontrib>Wu, Dai‐She</creatorcontrib><creatorcontrib>Zou, Jian‐Ping</creatorcontrib><creatorcontrib>Luo, Sheng‐Lian</creatorcontrib><title>Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN− into N2</title><title>Angewandte Chemie</title><description>Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN−) at the cathode and then converting the generated reduction products into nitrogen (N2) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN− and cathode, inducing the preferential enrichment of CN− to the cathode. CN− is hydrogenated by atomic hydrogen at the cathode to methylamine/ammonia, which are further oxidized into N2 by free chlorine derived from the anode. This paper provides a new idea for realizing the unconventional and unrealizable reactions in the electrocatalytic system. Electrostatic interaction could severely inhibit the selective conversion of ions. This work proposes a strategy to overcome electrostatic interaction via strong complexation, realizing the preferential hydrogenation of cyanide at the cathode, and then oxidizing the reduction products into nitrogen at the anode. The controlled mass transfer of ions provides more possibilities for their selective conversion in the electrocatalytic system.</description><subject>Ammonia</subject><subject>Anions</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Cations</subject><subject>Chemical reduction</subject><subject>Chemisorption</subject><subject>Chemistry</subject><subject>Chlorine</subject><subject>Complexation</subject><subject>Cyanide</subject><subject>Cyanides</subject><subject>Electric fields</subject><subject>Electrocatalytic System</subject><subject>Electrode polarization</subject><subject>Electrostatic Interaction</subject><subject>Electrostatic properties</subject><subject>Hydrogenation</subject><subject>Methylamine</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Transition metal oxides</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9OwkAQhzdGExG9et7Ec3H2X9s9kgaBhEAi3jfLdotLSrduC8obcPYRfRKLGE6Tmfl-M8mH0COBAQGgz7pa2wEFSgknXFyhHhGURCwRyTXqAXAepZTLW3TXNBsAiGkie6hc7G0wfuuqNR6V1rTBN61uncHTqrVBm9b5Cu-dxstu1UGZ39al_dJ_88IHPHHr9_KAl_aUdnuLX22-O8d8gbP5z_Ebu6r1eE7v0U2hy8Y-_Nc-Wr6M3rJJNFuMp9lwFtVJKiIuRA5mRWNORGxiwiEVRtK8AAOJlfGKm3TFqJCME2aYZrkkxhapKYo8ySXro6fz1Tr4j51tWrXxu1B1DxVNeJwSIiDtKHmmPl1pD6oObqvDQRFQJ5nqJFNdZKrhfDy6dOwXGPBsaA</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Tian, Lei</creator><creator>Zhang, Long‐Shuai</creator><creator>Zheng, Ling‐Ling</creator><creator>Chen, Ying</creator><creator>Ding, Lin</creator><creator>Fan, Jie‐Ping</creator><creator>Wu, Dai‐She</creator><creator>Zou, Jian‐Ping</creator><creator>Luo, Sheng‐Lian</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3585-6541</orcidid></search><sort><creationdate>20221212</creationdate><title>Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN− into N2</title><author>Tian, Lei ; Zhang, Long‐Shuai ; Zheng, Ling‐Ling ; Chen, Ying ; Ding, Lin ; Fan, Jie‐Ping ; Wu, Dai‐She ; Zou, Jian‐Ping ; Luo, Sheng‐Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p785-455d0cb264156c614085c92df0c07e96b4c8b32593413c3a3d91cef8cffd7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Anions</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Cations</topic><topic>Chemical reduction</topic><topic>Chemisorption</topic><topic>Chemistry</topic><topic>Chlorine</topic><topic>Complexation</topic><topic>Cyanide</topic><topic>Cyanides</topic><topic>Electric fields</topic><topic>Electrocatalytic System</topic><topic>Electrode polarization</topic><topic>Electrostatic Interaction</topic><topic>Electrostatic properties</topic><topic>Hydrogenation</topic><topic>Methylamine</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Lei</creatorcontrib><creatorcontrib>Zhang, Long‐Shuai</creatorcontrib><creatorcontrib>Zheng, Ling‐Ling</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Ding, Lin</creatorcontrib><creatorcontrib>Fan, Jie‐Ping</creatorcontrib><creatorcontrib>Wu, Dai‐She</creatorcontrib><creatorcontrib>Zou, Jian‐Ping</creatorcontrib><creatorcontrib>Luo, Sheng‐Lian</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Lei</au><au>Zhang, Long‐Shuai</au><au>Zheng, Ling‐Ling</au><au>Chen, Ying</au><au>Ding, Lin</au><au>Fan, Jie‐Ping</au><au>Wu, Dai‐She</au><au>Zou, Jian‐Ping</au><au>Luo, Sheng‐Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN− into N2</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-12-12</date><risdate>2022</risdate><volume>134</volume><issue>50</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN−) at the cathode and then converting the generated reduction products into nitrogen (N2) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN− and cathode, inducing the preferential enrichment of CN− to the cathode. CN− is hydrogenated by atomic hydrogen at the cathode to methylamine/ammonia, which are further oxidized into N2 by free chlorine derived from the anode. This paper provides a new idea for realizing the unconventional and unrealizable reactions in the electrocatalytic system. Electrostatic interaction could severely inhibit the selective conversion of ions. This work proposes a strategy to overcome electrostatic interaction via strong complexation, realizing the preferential hydrogenation of cyanide at the cathode, and then oxidizing the reduction products into nitrogen at the anode. The controlled mass transfer of ions provides more possibilities for their selective conversion in the electrocatalytic system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202214145</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3585-6541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-12, Vol.134 (50), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2746811508
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Anions
Cathodes
Cathodic polarization
Cations
Chemical reduction
Chemisorption
Chemistry
Chlorine
Complexation
Cyanide
Cyanides
Electric fields
Electrocatalytic System
Electrode polarization
Electrostatic Interaction
Electrostatic properties
Hydrogenation
Methylamine
Nitrogen
Oxidation
Transition metal oxides
title Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN− into N2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20Electrostatic%20Interaction%20via%20Strong%20Complexation%20for%20Highly%20Selective%20Reduction%20of%20CN%E2%88%92%20into%20N2&rft.jtitle=Angewandte%20Chemie&rft.au=Tian,%20Lei&rft.date=2022-12-12&rft.volume=134&rft.issue=50&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202214145&rft_dat=%3Cproquest_wiley%3E2746811508%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746811508&rft_id=info:pmid/&rfr_iscdi=true