Efficient solving of quantified inequality constraints over the real numbers
Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are ... and
Gespeichert in:
Veröffentlicht in: | ACM transactions on computational logic 2006-10, Vol.7 (4), p.723 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 723 |
container_title | ACM transactions on computational logic |
container_volume | 7 |
creator | Ratschan, Stefan |
description | Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are ... and |
doi_str_mv | 10.1145/1166109.1166113 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_274637600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1150757691</sourcerecordid><originalsourceid>FETCH-LOGICAL-p112t-8782723c2add7529218ecc9c190912371c3f9c046482200cb08b1adbefb211ad3</originalsourceid><addsrcrecordid>eNotjjtPwzAUhS0EEqUws1rsKb7XSWyPqCoPKRILSGyV49jgKtit7VTi3xMe0_ed5ZxDyDWwFUDd3AK0LTC1-iXwE7KAphGVqpu30x9HVXEhm3NykfOOMUDBcUG6jXPeeBsKzXE8-vBOo6OHSYfinbcD9cHOafTli5oYcknah5JpPNpEy4elyeqRhumztylfkjOnx2yv_rkkr_ebl_Vj1T0_PK3vumoPgKWSQqJAblAPg5h_IUhrjDKgmALkAgx3yrC6rSUiY6Znsgc99Nb1CLPwJbn5692neJhsLttdnFKYJ7co6paLljH-DQhgT5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274637600</pqid></control><display><type>article</type><title>Efficient solving of quantified inequality constraints over the real numbers</title><source>Access via ACM Digital Library</source><creator>Ratschan, Stefan</creator><creatorcontrib>Ratschan, Stefan</creatorcontrib><description>Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are ... and <. Solving such constraints is an undecidable problem when allowing function symbols such sin or cos. In this article, we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques. (ProQuest-CSA LLC:: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 1529-3785</identifier><identifier>EISSN: 1557-945X</identifier><identifier>DOI: 10.1145/1166109.1166113</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Algorithms ; Computer programming ; Studies</subject><ispartof>ACM transactions on computational logic, 2006-10, Vol.7 (4), p.723</ispartof><rights>Copyright Association for Computing Machinery Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Ratschan, Stefan</creatorcontrib><title>Efficient solving of quantified inequality constraints over the real numbers</title><title>ACM transactions on computational logic</title><description>Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are ... and <. Solving such constraints is an undecidable problem when allowing function symbols such sin or cos. In this article, we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques. (ProQuest-CSA LLC:: ... denotes formulae/symbols omitted.)</description><subject>Algorithms</subject><subject>Computer programming</subject><subject>Studies</subject><issn>1529-3785</issn><issn>1557-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotjjtPwzAUhS0EEqUws1rsKb7XSWyPqCoPKRILSGyV49jgKtit7VTi3xMe0_ed5ZxDyDWwFUDd3AK0LTC1-iXwE7KAphGVqpu30x9HVXEhm3NykfOOMUDBcUG6jXPeeBsKzXE8-vBOo6OHSYfinbcD9cHOafTli5oYcknah5JpPNpEy4elyeqRhumztylfkjOnx2yv_rkkr_ebl_Vj1T0_PK3vumoPgKWSQqJAblAPg5h_IUhrjDKgmALkAgx3yrC6rSUiY6Znsgc99Nb1CLPwJbn5692neJhsLttdnFKYJ7co6paLljH-DQhgT5M</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Ratschan, Stefan</creator><general>Association for Computing Machinery</general><scope>JQ2</scope></search><sort><creationdate>20061001</creationdate><title>Efficient solving of quantified inequality constraints over the real numbers</title><author>Ratschan, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p112t-8782723c2add7529218ecc9c190912371c3f9c046482200cb08b1adbefb211ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Computer programming</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratschan, Stefan</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>ACM transactions on computational logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratschan, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient solving of quantified inequality constraints over the real numbers</atitle><jtitle>ACM transactions on computational logic</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>7</volume><issue>4</issue><spage>723</spage><pages>723-</pages><issn>1529-3785</issn><eissn>1557-945X</eissn><abstract>Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are ... and <. Solving such constraints is an undecidable problem when allowing function symbols such sin or cos. In this article, we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques. (ProQuest-CSA LLC:: ... denotes formulae/symbols omitted.)</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1166109.1166113</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-3785 |
ispartof | ACM transactions on computational logic, 2006-10, Vol.7 (4), p.723 |
issn | 1529-3785 1557-945X |
language | eng |
recordid | cdi_proquest_journals_274637600 |
source | Access via ACM Digital Library |
subjects | Algorithms Computer programming Studies |
title | Efficient solving of quantified inequality constraints over the real numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20solving%20of%20quantified%20inequality%20constraints%20over%20the%20real%20numbers&rft.jtitle=ACM%20transactions%20on%20computational%20logic&rft.au=Ratschan,%20Stefan&rft.date=2006-10-01&rft.volume=7&rft.issue=4&rft.spage=723&rft.pages=723-&rft.issn=1529-3785&rft.eissn=1557-945X&rft_id=info:doi/10.1145/1166109.1166113&rft_dat=%3Cproquest%3E1150757691%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274637600&rft_id=info:pmid/&rfr_iscdi=true |