Combination of deep-learning models to forecast stock price of AAPL and TSLA

Deep Learning is a promising domain. It has different applications in different areas of life and its application on the stock market is widely used due to its efficiency. Long Short Term Memory (LSTM) proved its efficiency in dealing with time-series data due to the unique hidden unit structure. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jordanian Journal of Computers and Information Technology 2022-12, Vol.8 (4), p.345-356
Hauptverfasser: Mahbub, Usamah, Imarah, Hisham, Buradi, Zahrah, Lazaar, Muhammad, Buradi, Halim
Format: Artikel
Sprache:ara ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 4
container_start_page 345
container_title Jordanian Journal of Computers and Information Technology
container_volume 8
creator Mahbub, Usamah
Imarah, Hisham
Buradi, Zahrah
Lazaar, Muhammad
Buradi, Halim
description Deep Learning is a promising domain. It has different applications in different areas of life and its application on the stock market is widely used due to its efficiency. Long Short Term Memory (LSTM) proved its efficiency in dealing with time-series data due to the unique hidden unit structure. This paper integrated LSTM with attention mechanism and sentiment analysis to forecast the closing price of two stocks; namely, APPL and TSLA, from the NASDAQ stock market. We compared our hybrid model with LSTM, LSTM with sentiment analysis and LSTM with Attention Mechanism. Three benchmarks were used to measure the performance of the models; the first one is Mean Square Error (MSE), the second one is Root Mean Square Error (RMSE) and the third one is Mean Absolute Error (MAE). The results show that the hybridization is more accurate than the LSTM model alone.
doi_str_mv 10.5455/jjcit.71-1655723854
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2746143051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9737bef8ec2b4b288a5fd407122cede3</doaj_id><sourcerecordid>2746143051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4da8600ff61f7e1c467e4ad5e2f9daca915d68bf5f6f80ed73286cee1707dfda3</originalsourceid><addsrcrecordid>eNpFkVtLAzEQhRdRsNT-AkECPm_NPdnHUrzBgoL1OWSTSdm13dRk--C_d9uKfZph-M6ZA6cobgmeCy7EQ9e5dpgrUhIphKJMC35RTCgnoiRYycvjzsqKCXJdzHLuMMaUcskqNSnqZdw2bW-HNvYoBuQBduUGbOrbfo220cMmoyGiEBM4mweUh-i-0C61Dg78YvFeI9t7tPqoFzfFVbCbDLO_OS0-nx5Xy5eyfnt-XS7q0tGKDCX3VkuMQ5AkKCCOSwXcegE0VN46WxHhpW6CCDJoDF4xqqUDIAorH7xl0-L15Ouj7cyYZWvTj4m2NcdDTGtj09C6DZhKMdVA0OBowxuqtRXBc6wIpQ48sNHr_uS1S_F7D3kwXdynfoxvqOKScIYFGSl2olyKOScI_18JNocWzLEFo4g5tzCq7k4qGFEI9iziTFSVZr9as4Uf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746143051</pqid></control><display><type>article</type><title>Combination of deep-learning models to forecast stock price of AAPL and TSLA</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mahbub, Usamah ; Imarah, Hisham ; Buradi, Zahrah ; Lazaar, Muhammad ; Buradi, Halim</creator><creatorcontrib>Mahbub, Usamah ; Imarah, Hisham ; Buradi, Zahrah ; Lazaar, Muhammad ; Buradi, Halim</creatorcontrib><description>Deep Learning is a promising domain. It has different applications in different areas of life and its application on the stock market is widely used due to its efficiency. Long Short Term Memory (LSTM) proved its efficiency in dealing with time-series data due to the unique hidden unit structure. This paper integrated LSTM with attention mechanism and sentiment analysis to forecast the closing price of two stocks; namely, APPL and TSLA, from the NASDAQ stock market. We compared our hybrid model with LSTM, LSTM with sentiment analysis and LSTM with Attention Mechanism. Three benchmarks were used to measure the performance of the models; the first one is Mean Square Error (MSE), the second one is Root Mean Square Error (RMSE) and the third one is Mean Absolute Error (MAE). The results show that the hybridization is more accurate than the LSTM model alone.</description><identifier>ISSN: 2413-9351</identifier><identifier>EISSN: 2415-1076</identifier><identifier>DOI: 10.5455/jjcit.71-1655723854</identifier><language>ara ; eng</language><publisher>Amman, Jordan: Princess Sumaya University for Technology</publisher><subject>Artificial intelligence ; attention mechanism ; Business models ; Deep learning ; Discriminant analysis ; Efficiency ; hybrid model ; Information technology ; Investments ; lstm ; Mean square errors ; Natural language processing ; Neural networks ; Performance evaluation ; Prices ; Securities markets ; Sentiment analysis ; Stock exchanges ; Voice recognition ; Volatility ; Wavelet transforms</subject><ispartof>Jordanian Journal of Computers and Information Technology, 2022-12, Vol.8 (4), p.345-356</ispartof><rights>2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jjcit.org/page/Open-Access-Policy .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Mahbub, Usamah</creatorcontrib><creatorcontrib>Imarah, Hisham</creatorcontrib><creatorcontrib>Buradi, Zahrah</creatorcontrib><creatorcontrib>Lazaar, Muhammad</creatorcontrib><creatorcontrib>Buradi, Halim</creatorcontrib><title>Combination of deep-learning models to forecast stock price of AAPL and TSLA</title><title>Jordanian Journal of Computers and Information Technology</title><description>Deep Learning is a promising domain. It has different applications in different areas of life and its application on the stock market is widely used due to its efficiency. Long Short Term Memory (LSTM) proved its efficiency in dealing with time-series data due to the unique hidden unit structure. This paper integrated LSTM with attention mechanism and sentiment analysis to forecast the closing price of two stocks; namely, APPL and TSLA, from the NASDAQ stock market. We compared our hybrid model with LSTM, LSTM with sentiment analysis and LSTM with Attention Mechanism. Three benchmarks were used to measure the performance of the models; the first one is Mean Square Error (MSE), the second one is Root Mean Square Error (RMSE) and the third one is Mean Absolute Error (MAE). The results show that the hybridization is more accurate than the LSTM model alone.</description><subject>Artificial intelligence</subject><subject>attention mechanism</subject><subject>Business models</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Efficiency</subject><subject>hybrid model</subject><subject>Information technology</subject><subject>Investments</subject><subject>lstm</subject><subject>Mean square errors</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Prices</subject><subject>Securities markets</subject><subject>Sentiment analysis</subject><subject>Stock exchanges</subject><subject>Voice recognition</subject><subject>Volatility</subject><subject>Wavelet transforms</subject><issn>2413-9351</issn><issn>2415-1076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpFkVtLAzEQhRdRsNT-AkECPm_NPdnHUrzBgoL1OWSTSdm13dRk--C_d9uKfZph-M6ZA6cobgmeCy7EQ9e5dpgrUhIphKJMC35RTCgnoiRYycvjzsqKCXJdzHLuMMaUcskqNSnqZdw2bW-HNvYoBuQBduUGbOrbfo220cMmoyGiEBM4mweUh-i-0C61Dg78YvFeI9t7tPqoFzfFVbCbDLO_OS0-nx5Xy5eyfnt-XS7q0tGKDCX3VkuMQ5AkKCCOSwXcegE0VN46WxHhpW6CCDJoDF4xqqUDIAorH7xl0-L15Ouj7cyYZWvTj4m2NcdDTGtj09C6DZhKMdVA0OBowxuqtRXBc6wIpQ48sNHr_uS1S_F7D3kwXdynfoxvqOKScIYFGSl2olyKOScI_18JNocWzLEFo4g5tzCq7k4qGFEI9iziTFSVZr9as4Uf</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mahbub, Usamah</creator><creator>Imarah, Hisham</creator><creator>Buradi, Zahrah</creator><creator>Lazaar, Muhammad</creator><creator>Buradi, Halim</creator><general>Princess Sumaya University for Technology</general><general>Scientific Research Support Fund of Jordan Princess Sumaya University for Technology</general><general>Scientific Research Support Fund of Jordan (SRSF) and Princess Sumaya University for Technology (PSUT)</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Combination of deep-learning models to forecast stock price of AAPL and TSLA</title><author>Mahbub, Usamah ; Imarah, Hisham ; Buradi, Zahrah ; Lazaar, Muhammad ; Buradi, Halim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4da8600ff61f7e1c467e4ad5e2f9daca915d68bf5f6f80ed73286cee1707dfda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>ara ; eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>attention mechanism</topic><topic>Business models</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Efficiency</topic><topic>hybrid model</topic><topic>Information technology</topic><topic>Investments</topic><topic>lstm</topic><topic>Mean square errors</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Prices</topic><topic>Securities markets</topic><topic>Sentiment analysis</topic><topic>Stock exchanges</topic><topic>Voice recognition</topic><topic>Volatility</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahbub, Usamah</creatorcontrib><creatorcontrib>Imarah, Hisham</creatorcontrib><creatorcontrib>Buradi, Zahrah</creatorcontrib><creatorcontrib>Lazaar, Muhammad</creatorcontrib><creatorcontrib>Buradi, Halim</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Jordanian Journal of Computers and Information Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahbub, Usamah</au><au>Imarah, Hisham</au><au>Buradi, Zahrah</au><au>Lazaar, Muhammad</au><au>Buradi, Halim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of deep-learning models to forecast stock price of AAPL and TSLA</atitle><jtitle>Jordanian Journal of Computers and Information Technology</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><spage>345</spage><epage>356</epage><pages>345-356</pages><issn>2413-9351</issn><eissn>2415-1076</eissn><abstract>Deep Learning is a promising domain. It has different applications in different areas of life and its application on the stock market is widely used due to its efficiency. Long Short Term Memory (LSTM) proved its efficiency in dealing with time-series data due to the unique hidden unit structure. This paper integrated LSTM with attention mechanism and sentiment analysis to forecast the closing price of two stocks; namely, APPL and TSLA, from the NASDAQ stock market. We compared our hybrid model with LSTM, LSTM with sentiment analysis and LSTM with Attention Mechanism. Three benchmarks were used to measure the performance of the models; the first one is Mean Square Error (MSE), the second one is Root Mean Square Error (RMSE) and the third one is Mean Absolute Error (MAE). The results show that the hybridization is more accurate than the LSTM model alone.</abstract><cop>Amman, Jordan</cop><pub>Princess Sumaya University for Technology</pub><doi>10.5455/jjcit.71-1655723854</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2413-9351
ispartof Jordanian Journal of Computers and Information Technology, 2022-12, Vol.8 (4), p.345-356
issn 2413-9351
2415-1076
language ara ; eng
recordid cdi_proquest_journals_2746143051
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial intelligence
attention mechanism
Business models
Deep learning
Discriminant analysis
Efficiency
hybrid model
Information technology
Investments
lstm
Mean square errors
Natural language processing
Neural networks
Performance evaluation
Prices
Securities markets
Sentiment analysis
Stock exchanges
Voice recognition
Volatility
Wavelet transforms
title Combination of deep-learning models to forecast stock price of AAPL and TSLA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20deep-learning%20models%20to%20forecast%20stock%20price%20of%20AAPL%20and%20TSLA&rft.jtitle=Jordanian%20Journal%20of%20Computers%20and%20Information%20Technology&rft.au=Mahbub,%20Usamah&rft.date=2022-12-01&rft.volume=8&rft.issue=4&rft.spage=345&rft.epage=356&rft.pages=345-356&rft.issn=2413-9351&rft.eissn=2415-1076&rft_id=info:doi/10.5455/jjcit.71-1655723854&rft_dat=%3Cproquest_doaj_%3E2746143051%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746143051&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9737bef8ec2b4b288a5fd407122cede3&rfr_iscdi=true