Monitoring Stress State of H-Shape Steel Using Ceramic Piezoelectric Sensor: A Feasibility Study

To monitor the stress state and yield capacity of H-beams across their entire service process, a real-time monitoring method based on the energy signal response of ceramic piezoelectric sensors is proposed in this paper. The method is applied to conduct loading experiments on H-beams under different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2022-11, Vol.2022, p.1-10
Hauptverfasser: Zhu, Daopei, Li, Jiafeng, Wang, Zhangli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Journal of sensors
container_volume 2022
creator Zhu, Daopei
Li, Jiafeng
Wang, Zhangli
description To monitor the stress state and yield capacity of H-beams across their entire service process, a real-time monitoring method based on the energy signal response of ceramic piezoelectric sensors is proposed in this paper. The method is applied to conduct loading experiments on H-beams under different load values and web heights. Then, the amplitude and energy of the piezoelectric signals under the two working conditions are compared and analyzed, and the finite element analysis results are verified. The experimental results show that the time-domain waveform energy index increases under an increase in web height or load. Taking the H-section steel member with a web height of 10 cm as an example, when the load value is less than 500 kN/m, the energy index increases (on average) by ~10.5% for every 100 kN/m load increase; when the load value exceeds 500 kN/m and is below 675 kN/m (yield load), the same load increases the energy index by ~13.4%. Meanwhile, a 1 cm average increase in web height increases the energy index by ~14.6%. The finite element simulation results indicate that the ceramic piezoelectric sensor load increases under external load increases up to the yielding load. Because the stress state at the sensor location directly determines the stress wave propagation, the critical buckling loads of H-beams can be predicted using the energy index.
doi_str_mv 10.1155/2022/8793615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2745658997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745658997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-de28ea9e53925d1a1e29261f1040f3cc2d6063237f33434c23d9071a974445ba3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKs3P8CCR12bP5tk460Ua4WKQi14i2l21qZsNzXZIvXTm1Lx6OnNDL-ZeTyELgm-JYTzAcWUDkqpmCD8CPWIKGUuqSiP_2r-dorOYlxhLJhkrIfen3zrOh9c-5HNugAxJjEdZL7OJvlsaTaQBgBNNo97ZgTBrJ3NXhx8e2jAdiF1M2ijD3fZMBuDiW7hGtft0t622p2jk9o0ES5-tY_m4_vX0SSfPj88jobT3Ca3XV4BLcEo4ExRXhFDgCoqSE1wgWtmLa1EskyZrBkrWGEpqxSWxChZFAVfGNZHV4e7m-A_txA7vfLb0KaXmsqCC14qJRN1c6Bs8DEGqPUmuLUJO02w3meo9xnq3wwTfn3Al66tzJf7n_4B01xvaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745658997</pqid></control><display><type>article</type><title>Monitoring Stress State of H-Shape Steel Using Ceramic Piezoelectric Sensor: A Feasibility Study</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Daopei ; Li, Jiafeng ; Wang, Zhangli</creator><contributor>Wandowski, Tomasz</contributor><creatorcontrib>Zhu, Daopei ; Li, Jiafeng ; Wang, Zhangli ; Wandowski, Tomasz</creatorcontrib><description>To monitor the stress state and yield capacity of H-beams across their entire service process, a real-time monitoring method based on the energy signal response of ceramic piezoelectric sensors is proposed in this paper. The method is applied to conduct loading experiments on H-beams under different load values and web heights. Then, the amplitude and energy of the piezoelectric signals under the two working conditions are compared and analyzed, and the finite element analysis results are verified. The experimental results show that the time-domain waveform energy index increases under an increase in web height or load. Taking the H-section steel member with a web height of 10 cm as an example, when the load value is less than 500 kN/m, the energy index increases (on average) by ~10.5% for every 100 kN/m load increase; when the load value exceeds 500 kN/m and is below 675 kN/m (yield load), the same load increases the energy index by ~13.4%. Meanwhile, a 1 cm average increase in web height increases the energy index by ~14.6%. The finite element simulation results indicate that the ceramic piezoelectric sensor load increases under external load increases up to the yielding load. Because the stress state at the sensor location directly determines the stress wave propagation, the critical buckling loads of H-beams can be predicted using the energy index.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/8793615</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Acoustics ; Ceramics ; Construction ; Energy ; Epoxy resins ; Experiments ; Feasibility studies ; Finite element method ; High rise buildings ; I beams ; Load ; Monitoring ; Neural networks ; Nondestructive testing ; Piezoelectricity ; Sensors ; Signal processing ; Steel structures ; Stress propagation ; Stress state ; Stress waves ; Wave propagation ; Waveforms ; Webs (structural)</subject><ispartof>Journal of sensors, 2022-11, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Daopei Zhu et al.</rights><rights>Copyright © 2022 Daopei Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-de28ea9e53925d1a1e29261f1040f3cc2d6063237f33434c23d9071a974445ba3</cites><orcidid>0000-0002-6579-7319 ; 0000-0002-2504-0442 ; 0000-0002-0615-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Wandowski, Tomasz</contributor><creatorcontrib>Zhu, Daopei</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Wang, Zhangli</creatorcontrib><title>Monitoring Stress State of H-Shape Steel Using Ceramic Piezoelectric Sensor: A Feasibility Study</title><title>Journal of sensors</title><description>To monitor the stress state and yield capacity of H-beams across their entire service process, a real-time monitoring method based on the energy signal response of ceramic piezoelectric sensors is proposed in this paper. The method is applied to conduct loading experiments on H-beams under different load values and web heights. Then, the amplitude and energy of the piezoelectric signals under the two working conditions are compared and analyzed, and the finite element analysis results are verified. The experimental results show that the time-domain waveform energy index increases under an increase in web height or load. Taking the H-section steel member with a web height of 10 cm as an example, when the load value is less than 500 kN/m, the energy index increases (on average) by ~10.5% for every 100 kN/m load increase; when the load value exceeds 500 kN/m and is below 675 kN/m (yield load), the same load increases the energy index by ~13.4%. Meanwhile, a 1 cm average increase in web height increases the energy index by ~14.6%. The finite element simulation results indicate that the ceramic piezoelectric sensor load increases under external load increases up to the yielding load. Because the stress state at the sensor location directly determines the stress wave propagation, the critical buckling loads of H-beams can be predicted using the energy index.</description><subject>Acoustics</subject><subject>Ceramics</subject><subject>Construction</subject><subject>Energy</subject><subject>Epoxy resins</subject><subject>Experiments</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>High rise buildings</subject><subject>I beams</subject><subject>Load</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Piezoelectricity</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Steel structures</subject><subject>Stress propagation</subject><subject>Stress state</subject><subject>Stress waves</subject><subject>Wave propagation</subject><subject>Waveforms</subject><subject>Webs (structural)</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKs3P8CCR12bP5tk460Ua4WKQi14i2l21qZsNzXZIvXTm1Lx6OnNDL-ZeTyELgm-JYTzAcWUDkqpmCD8CPWIKGUuqSiP_2r-dorOYlxhLJhkrIfen3zrOh9c-5HNugAxJjEdZL7OJvlsaTaQBgBNNo97ZgTBrJ3NXhx8e2jAdiF1M2ijD3fZMBuDiW7hGtft0t622p2jk9o0ES5-tY_m4_vX0SSfPj88jobT3Ca3XV4BLcEo4ExRXhFDgCoqSE1wgWtmLa1EskyZrBkrWGEpqxSWxChZFAVfGNZHV4e7m-A_txA7vfLb0KaXmsqCC14qJRN1c6Bs8DEGqPUmuLUJO02w3meo9xnq3wwTfn3Al66tzJf7n_4B01xvaA</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Zhu, Daopei</creator><creator>Li, Jiafeng</creator><creator>Wang, Zhangli</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6579-7319</orcidid><orcidid>https://orcid.org/0000-0002-2504-0442</orcidid><orcidid>https://orcid.org/0000-0002-0615-580X</orcidid></search><sort><creationdate>20221124</creationdate><title>Monitoring Stress State of H-Shape Steel Using Ceramic Piezoelectric Sensor: A Feasibility Study</title><author>Zhu, Daopei ; Li, Jiafeng ; Wang, Zhangli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-de28ea9e53925d1a1e29261f1040f3cc2d6063237f33434c23d9071a974445ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Ceramics</topic><topic>Construction</topic><topic>Energy</topic><topic>Epoxy resins</topic><topic>Experiments</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>High rise buildings</topic><topic>I beams</topic><topic>Load</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Piezoelectricity</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Steel structures</topic><topic>Stress propagation</topic><topic>Stress state</topic><topic>Stress waves</topic><topic>Wave propagation</topic><topic>Waveforms</topic><topic>Webs (structural)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Daopei</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Wang, Zhangli</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Daopei</au><au>Li, Jiafeng</au><au>Wang, Zhangli</au><au>Wandowski, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Stress State of H-Shape Steel Using Ceramic Piezoelectric Sensor: A Feasibility Study</atitle><jtitle>Journal of sensors</jtitle><date>2022-11-24</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>To monitor the stress state and yield capacity of H-beams across their entire service process, a real-time monitoring method based on the energy signal response of ceramic piezoelectric sensors is proposed in this paper. The method is applied to conduct loading experiments on H-beams under different load values and web heights. Then, the amplitude and energy of the piezoelectric signals under the two working conditions are compared and analyzed, and the finite element analysis results are verified. The experimental results show that the time-domain waveform energy index increases under an increase in web height or load. Taking the H-section steel member with a web height of 10 cm as an example, when the load value is less than 500 kN/m, the energy index increases (on average) by ~10.5% for every 100 kN/m load increase; when the load value exceeds 500 kN/m and is below 675 kN/m (yield load), the same load increases the energy index by ~13.4%. Meanwhile, a 1 cm average increase in web height increases the energy index by ~14.6%. The finite element simulation results indicate that the ceramic piezoelectric sensor load increases under external load increases up to the yielding load. Because the stress state at the sensor location directly determines the stress wave propagation, the critical buckling loads of H-beams can be predicted using the energy index.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/8793615</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6579-7319</orcidid><orcidid>https://orcid.org/0000-0002-2504-0442</orcidid><orcidid>https://orcid.org/0000-0002-0615-580X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2022-11, Vol.2022, p.1-10
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2745658997
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Acoustics
Ceramics
Construction
Energy
Epoxy resins
Experiments
Feasibility studies
Finite element method
High rise buildings
I beams
Load
Monitoring
Neural networks
Nondestructive testing
Piezoelectricity
Sensors
Signal processing
Steel structures
Stress propagation
Stress state
Stress waves
Wave propagation
Waveforms
Webs (structural)
title Monitoring Stress State of H-Shape Steel Using Ceramic Piezoelectric Sensor: A Feasibility Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Stress%20State%20of%20H-Shape%20Steel%20Using%20Ceramic%20Piezoelectric%20Sensor:%20A%20Feasibility%20Study&rft.jtitle=Journal%20of%20sensors&rft.au=Zhu,%20Daopei&rft.date=2022-11-24&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/8793615&rft_dat=%3Cproquest_cross%3E2745658997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745658997&rft_id=info:pmid/&rfr_iscdi=true