Non-Convex High-Order TV and ℓ 0 -Norm Wavelet Frame-Based Speckle Noise Reduction

To obtain natural restorations from the noisy images contaminated by speckle noise, this brief presents a novel hybrid non-convex regularizers model for image denoising. The proposed new variational model closely combines the superiorities of non-convex high-order total variation function and [Formu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-12, Vol.69 (12), p.5174-5178
Hauptverfasser: Liu, Xinwu, Lian, Wenhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5178
container_issue 12
container_start_page 5174
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 69
creator Liu, Xinwu
Lian, Wenhui
description To obtain natural restorations from the noisy images contaminated by speckle noise, this brief presents a novel hybrid non-convex regularizers model for image denoising. The proposed new variational model closely combines the superiorities of non-convex high-order total variation function and [Formula Omitted]-norm wavelet frame. This combination helps to avoid the staircase artifacts and maintain discontinuities while removing noise. Numerically, by integrating two popular tools: iteratively reweighted [Formula Omitted] algorithm and variable splitting method, a modified alternating minimization method is adopted to optimize the resulting minimization problem. Finally, compared with several despeckling methods, numerical experiments indicate the competitive performance of our solver in visual improvement and objective measurement.
doi_str_mv 10.1109/TCSII.2022.3197237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2745134837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745134837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c717-74fd97dce4f0ec97933957ebf07883490a75a0cd5b4b18d62a257b70971b07e3</originalsourceid><addsrcrecordid>eNotkM1OAjEUhRujiYi-gKsmrov9G-90qRMVEgKJTHTZdKZ3FIQptkB07xv4hj6JIKzOWXw5J_kIuRS8JwQ312UxGQx6kkvZU8KAVHBEOiLLcqbAiONd14YBaDglZynNOJeGK9kh5Si0rAjtBj9pf_r6xsbRY6TlM3Wtp7_fP5RTNgpxQV_cBue4og_RLZDduYSeTpZYv8-RjsI0IX1Cv65X09Cek5PGzRNeHLJLJg_3ZdFnw_HjoLgdshoEMNCNN-Br1A3H2oBRymSAVcMhz5U23EHmeO2zSlci9zfSyQwq4AZExQFVl1ztV5cxfKwxrewsrGO7PbQSdCaUzhVsKbmn6hhSitjYZZwuXPyygtudO_vvzu7c2YM79QelzmB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745134837</pqid></control><display><type>article</type><title>Non-Convex High-Order TV and ℓ 0 -Norm Wavelet Frame-Based Speckle Noise Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xinwu ; Lian, Wenhui</creator><creatorcontrib>Liu, Xinwu ; Lian, Wenhui</creatorcontrib><description>To obtain natural restorations from the noisy images contaminated by speckle noise, this brief presents a novel hybrid non-convex regularizers model for image denoising. The proposed new variational model closely combines the superiorities of non-convex high-order total variation function and [Formula Omitted]-norm wavelet frame. This combination helps to avoid the staircase artifacts and maintain discontinuities while removing noise. Numerically, by integrating two popular tools: iteratively reweighted [Formula Omitted] algorithm and variable splitting method, a modified alternating minimization method is adopted to optimize the resulting minimization problem. Finally, compared with several despeckling methods, numerical experiments indicate the competitive performance of our solver in visual improvement and objective measurement.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3197237</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Mathematical analysis ; Mathematical models ; Noise reduction ; Numerical methods ; Optimization</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2022-12, Vol.69 (12), p.5174-5178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c717-74fd97dce4f0ec97933957ebf07883490a75a0cd5b4b18d62a257b70971b07e3</cites><orcidid>0000-0003-1909-3721 ; 0000-0002-7845-8818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Liu, Xinwu</creatorcontrib><creatorcontrib>Lian, Wenhui</creatorcontrib><title>Non-Convex High-Order TV and ℓ 0 -Norm Wavelet Frame-Based Speckle Noise Reduction</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><description>To obtain natural restorations from the noisy images contaminated by speckle noise, this brief presents a novel hybrid non-convex regularizers model for image denoising. The proposed new variational model closely combines the superiorities of non-convex high-order total variation function and [Formula Omitted]-norm wavelet frame. This combination helps to avoid the staircase artifacts and maintain discontinuities while removing noise. Numerically, by integrating two popular tools: iteratively reweighted [Formula Omitted] algorithm and variable splitting method, a modified alternating minimization method is adopted to optimize the resulting minimization problem. Finally, compared with several despeckling methods, numerical experiments indicate the competitive performance of our solver in visual improvement and objective measurement.</description><subject>Algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Numerical methods</subject><subject>Optimization</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM1OAjEUhRujiYi-gKsmrov9G-90qRMVEgKJTHTZdKZ3FIQptkB07xv4hj6JIKzOWXw5J_kIuRS8JwQ312UxGQx6kkvZU8KAVHBEOiLLcqbAiONd14YBaDglZynNOJeGK9kh5Si0rAjtBj9pf_r6xsbRY6TlM3Wtp7_fP5RTNgpxQV_cBue4og_RLZDduYSeTpZYv8-RjsI0IX1Cv65X09Cek5PGzRNeHLJLJg_3ZdFnw_HjoLgdshoEMNCNN-Br1A3H2oBRymSAVcMhz5U23EHmeO2zSlci9zfSyQwq4AZExQFVl1ztV5cxfKwxrewsrGO7PbQSdCaUzhVsKbmn6hhSitjYZZwuXPyygtudO_vvzu7c2YM79QelzmB4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Liu, Xinwu</creator><creator>Lian, Wenhui</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1909-3721</orcidid><orcidid>https://orcid.org/0000-0002-7845-8818</orcidid></search><sort><creationdate>202212</creationdate><title>Non-Convex High-Order TV and ℓ 0 -Norm Wavelet Frame-Based Speckle Noise Reduction</title><author>Liu, Xinwu ; Lian, Wenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c717-74fd97dce4f0ec97933957ebf07883490a75a0cd5b4b18d62a257b70971b07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Numerical methods</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinwu</creatorcontrib><creatorcontrib>Lian, Wenhui</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xinwu</au><au>Lian, Wenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Convex High-Order TV and ℓ 0 -Norm Wavelet Frame-Based Speckle Noise Reduction</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><date>2022-12</date><risdate>2022</risdate><volume>69</volume><issue>12</issue><spage>5174</spage><epage>5178</epage><pages>5174-5178</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><abstract>To obtain natural restorations from the noisy images contaminated by speckle noise, this brief presents a novel hybrid non-convex regularizers model for image denoising. The proposed new variational model closely combines the superiorities of non-convex high-order total variation function and [Formula Omitted]-norm wavelet frame. This combination helps to avoid the staircase artifacts and maintain discontinuities while removing noise. Numerically, by integrating two popular tools: iteratively reweighted [Formula Omitted] algorithm and variable splitting method, a modified alternating minimization method is adopted to optimize the resulting minimization problem. Finally, compared with several despeckling methods, numerical experiments indicate the competitive performance of our solver in visual improvement and objective measurement.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TCSII.2022.3197237</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1909-3721</orcidid><orcidid>https://orcid.org/0000-0002-7845-8818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2022-12, Vol.69 (12), p.5174-5178
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2745134837
source IEEE Electronic Library (IEL)
subjects Algorithms
Mathematical analysis
Mathematical models
Noise reduction
Numerical methods
Optimization
title Non-Convex High-Order TV and ℓ 0 -Norm Wavelet Frame-Based Speckle Noise Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Convex%20High-Order%20TV%20and%20%E2%84%93%200%20-Norm%20Wavelet%20Frame-Based%20Speckle%20Noise%20Reduction&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Liu,%20Xinwu&rft.date=2022-12&rft.volume=69&rft.issue=12&rft.spage=5174&rft.epage=5178&rft.pages=5174-5178&rft.issn=1549-7747&rft.eissn=1558-3791&rft_id=info:doi/10.1109/TCSII.2022.3197237&rft_dat=%3Cproquest_cross%3E2745134837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745134837&rft_id=info:pmid/&rfr_iscdi=true