Engineering Interfacial Effects in Electron and Phonon Transport of Sb2Te3/MoS2 Multilayer for Thermoelectric ZT Above 2.0

Efficient thermoelectric (TE) conversion of waste heat to usable energy is a holy grail promising to address major societal issues related to energy crisis and global heat management. For these to be economical, synthesis of a solid‐state material with a high figure‐of‐merit (ZT) values is the key,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-12, Vol.32 (49), p.n/a
Hauptverfasser: Ahmad, Mujeeb, Agarwal, Khushboo, Munoz, Sergio Gonzalez, Ghosh, Abhishek, Kodan, Nisha, Kolosov, Oleg Victor, Mehta, Bodh Raj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient thermoelectric (TE) conversion of waste heat to usable energy is a holy grail promising to address major societal issues related to energy crisis and global heat management. For these to be economical, synthesis of a solid‐state material with a high figure‐of‐merit (ZT) values is the key, with characterization methods quantifying TE and heat transport properties being indispensable for guiding the development of such materials. In the present study, a large enhancement of the TE power factor in Sb2Te3/MoS2 multilayer structures is reported. A new approach is used to simultaneously experimentally determine the values of in‐plane (kxy) and out‐of‐pane (kz) thermal conductivities for multilayer samples with characteristic layer thickness of few nanometres, essential for the quantification of the ZT, the key parameter for the TE material. Combining simultaneous enhancement in the value of in‐plane power factor (to (4.9 ± 0.4) × mWm−1 K−2) and reduction of the in‐plane value of the thermal conductivity (to 0.7 ± 0.1 Wm−1 K−1) for Sb2Te3/MoS2 multilayer sample led to high values of ZT of 2.08 ± 0.37 at room temperature. The present study, therefore, sets the foundation for a new methodology of exploiting the properties of 2D/3D interfaces for the development of novel fully viable thermoelectric materials. A novel method of cross‐sectional scanning thermal microscopy proves to be most accurate to characterize the thermal transport in such complex structures by performing the thermal conductance measurements on a wedge cut geometry. Enhanced phonon scattering and large values of power factor results in a high value of ZT = 2.08 ± 0.37 at room temperature for optimized thickness of MoS2 in the multilayer samples.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202206384