Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules
High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market acces...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-12, Vol.32 (49), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Liu, Cong Wu, Shaohang Gao, Yanyan Feng, Yang Wang, Xinlong Xie, Yifei Zheng, Jianzha Zhu, Hongbing Li, Zhiqiang Schropp, Ruud E.I. Shen, Kai Mai, Yaohua |
description | High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds.
The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2. |
doi_str_mv | 10.1002/adfm.202209601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2744608519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2744608519</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2331-9358566591ee1494ea4f2971060909d7d9e35510bdf1842e9527a137b0e504ae3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFa3rgfcKJh655VkljV9CS0KUXA3TJubNiWPOmmQ7vwJ_kZ_iamVrs49h8O58BFyzaDHAPiDTdKix4Fz0D6wE9JhPvM9ATw8Pd7s_Zxc1PUagAWBkB2yerRlQsd2Q_c6wBQXWzosl1mJ6LJySdPK0Um2XP18fb-ga11hywXSyCZF1hRtmjpEGs_5bXwf452gcZVbRyPM8_pvc1YlTY71JTlLbV7j1b92ydto-BpNvOnz-CnqT70NF4J5WqhQ-b7SDJFJLdHKlOuAgQ8adBIkGoVSDOZJykLJUSseWCaCOaACaVF0yc1hd-OqjwbrrVlXjSvbl4YHUvoQKqbblj60PrMcd2bjssK6nWFg9ijNHqU5ojT9wWh2dOIXDy5o-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744608519</pqid></control><display><type>article</type><title>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Cong ; Wu, Shaohang ; Gao, Yanyan ; Feng, Yang ; Wang, Xinlong ; Xie, Yifei ; Zheng, Jianzha ; Zhu, Hongbing ; Li, Zhiqiang ; Schropp, Ruud E.I. ; Shen, Kai ; Mai, Yaohua</creator><creatorcontrib>Liu, Cong ; Wu, Shaohang ; Gao, Yanyan ; Feng, Yang ; Wang, Xinlong ; Xie, Yifei ; Zheng, Jianzha ; Zhu, Hongbing ; Li, Zhiqiang ; Schropp, Ruud E.I. ; Shen, Kai ; Mai, Yaohua</creatorcontrib><description>High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds.
The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209601</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Buffer layers ; Cadmium ; Cadmium compounds ; Cd‐free ; co‐sublimations ; Crystal defects ; defects ; Energy conversion efficiency ; Energy gap ; Grain size ; Materials science ; Optimization ; Photovoltaic cells ; Sb 2(S,Se) 3 solar cells and modules ; Solar cells ; Sublimation ; Substrates ; Titanium dioxide ; V‐shaped graded band gaps</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (49), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3905-9459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Wu, Shaohang</creatorcontrib><creatorcontrib>Gao, Yanyan</creatorcontrib><creatorcontrib>Feng, Yang</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Xie, Yifei</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Zhu, Hongbing</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E.I.</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><title>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</title><title>Advanced functional materials</title><description>High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds.
The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.</description><subject>Absorbers</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium compounds</subject><subject>Cd‐free</subject><subject>co‐sublimations</subject><subject>Crystal defects</subject><subject>defects</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Grain size</subject><subject>Materials science</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Sb 2(S,Se) 3 solar cells and modules</subject><subject>Solar cells</subject><subject>Sublimation</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>V‐shaped graded band gaps</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFa3rgfcKJh655VkljV9CS0KUXA3TJubNiWPOmmQ7vwJ_kZ_iamVrs49h8O58BFyzaDHAPiDTdKix4Fz0D6wE9JhPvM9ATw8Pd7s_Zxc1PUagAWBkB2yerRlQsd2Q_c6wBQXWzosl1mJ6LJySdPK0Um2XP18fb-ga11hywXSyCZF1hRtmjpEGs_5bXwf452gcZVbRyPM8_pvc1YlTY71JTlLbV7j1b92ydto-BpNvOnz-CnqT70NF4J5WqhQ-b7SDJFJLdHKlOuAgQ8adBIkGoVSDOZJykLJUSseWCaCOaACaVF0yc1hd-OqjwbrrVlXjSvbl4YHUvoQKqbblj60PrMcd2bjssK6nWFg9ijNHqU5ojT9wWh2dOIXDy5o-w</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Liu, Cong</creator><creator>Wu, Shaohang</creator><creator>Gao, Yanyan</creator><creator>Feng, Yang</creator><creator>Wang, Xinlong</creator><creator>Xie, Yifei</creator><creator>Zheng, Jianzha</creator><creator>Zhu, Hongbing</creator><creator>Li, Zhiqiang</creator><creator>Schropp, Ruud E.I.</creator><creator>Shen, Kai</creator><creator>Mai, Yaohua</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3905-9459</orcidid></search><sort><creationdate>20221202</creationdate><title>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</title><author>Liu, Cong ; Wu, Shaohang ; Gao, Yanyan ; Feng, Yang ; Wang, Xinlong ; Xie, Yifei ; Zheng, Jianzha ; Zhu, Hongbing ; Li, Zhiqiang ; Schropp, Ruud E.I. ; Shen, Kai ; Mai, Yaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2331-9358566591ee1494ea4f2971060909d7d9e35510bdf1842e9527a137b0e504ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium compounds</topic><topic>Cd‐free</topic><topic>co‐sublimations</topic><topic>Crystal defects</topic><topic>defects</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Grain size</topic><topic>Materials science</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Sb 2(S,Se) 3 solar cells and modules</topic><topic>Solar cells</topic><topic>Sublimation</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>V‐shaped graded band gaps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Wu, Shaohang</creatorcontrib><creatorcontrib>Gao, Yanyan</creatorcontrib><creatorcontrib>Feng, Yang</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Xie, Yifei</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Zhu, Hongbing</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E.I.</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Wu, Shaohang</au><au>Gao, Yanyan</au><au>Feng, Yang</au><au>Wang, Xinlong</au><au>Xie, Yifei</au><au>Zheng, Jianzha</au><au>Zhu, Hongbing</au><au>Li, Zhiqiang</au><au>Schropp, Ruud E.I.</au><au>Shen, Kai</au><au>Mai, Yaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-02</date><risdate>2022</risdate><volume>32</volume><issue>49</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds.
The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209601</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3905-9459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-12, Vol.32 (49), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2744608519 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorbers Buffer layers Cadmium Cadmium compounds Cd‐free co‐sublimations Crystal defects defects Energy conversion efficiency Energy gap Grain size Materials science Optimization Photovoltaic cells Sb 2(S,Se) 3 solar cells and modules Solar cells Sublimation Substrates Titanium dioxide V‐shaped graded band gaps |
title | Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Gap%20and%20Defect%20Engineering%20for%20High%E2%80%90Performance%20Cadmium%E2%80%90free%20Sb2(S,Se)3%20Solar%20Cells%20and%20Modules&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Cong&rft.date=2022-12-02&rft.volume=32&rft.issue=49&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209601&rft_dat=%3Cproquest_wiley%3E2744608519%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2744608519&rft_id=info:pmid/&rfr_iscdi=true |