Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules

High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market acces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-12, Vol.32 (49), p.n/a
Hauptverfasser: Liu, Cong, Wu, Shaohang, Gao, Yanyan, Feng, Yang, Wang, Xinlong, Xie, Yifei, Zheng, Jianzha, Zhu, Hongbing, Li, Zhiqiang, Schropp, Ruud E.I., Shen, Kai, Mai, Yaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page
container_title Advanced functional materials
container_volume 32
creator Liu, Cong
Wu, Shaohang
Gao, Yanyan
Feng, Yang
Wang, Xinlong
Xie, Yifei
Zheng, Jianzha
Zhu, Hongbing
Li, Zhiqiang
Schropp, Ruud E.I.
Shen, Kai
Mai, Yaohua
description High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds. The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.
doi_str_mv 10.1002/adfm.202209601
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2744608519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2744608519</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2331-9358566591ee1494ea4f2971060909d7d9e35510bdf1842e9527a137b0e504ae3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFa3rgfcKJh655VkljV9CS0KUXA3TJubNiWPOmmQ7vwJ_kZ_iamVrs49h8O58BFyzaDHAPiDTdKix4Fz0D6wE9JhPvM9ATw8Pd7s_Zxc1PUagAWBkB2yerRlQsd2Q_c6wBQXWzosl1mJ6LJySdPK0Um2XP18fb-ga11hywXSyCZF1hRtmjpEGs_5bXwf452gcZVbRyPM8_pvc1YlTY71JTlLbV7j1b92ydto-BpNvOnz-CnqT70NF4J5WqhQ-b7SDJFJLdHKlOuAgQ8adBIkGoVSDOZJykLJUSseWCaCOaACaVF0yc1hd-OqjwbrrVlXjSvbl4YHUvoQKqbblj60PrMcd2bjssK6nWFg9ijNHqU5ojT9wWh2dOIXDy5o-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744608519</pqid></control><display><type>article</type><title>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Cong ; Wu, Shaohang ; Gao, Yanyan ; Feng, Yang ; Wang, Xinlong ; Xie, Yifei ; Zheng, Jianzha ; Zhu, Hongbing ; Li, Zhiqiang ; Schropp, Ruud E.I. ; Shen, Kai ; Mai, Yaohua</creator><creatorcontrib>Liu, Cong ; Wu, Shaohang ; Gao, Yanyan ; Feng, Yang ; Wang, Xinlong ; Xie, Yifei ; Zheng, Jianzha ; Zhu, Hongbing ; Li, Zhiqiang ; Schropp, Ruud E.I. ; Shen, Kai ; Mai, Yaohua</creatorcontrib><description>High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds. The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209601</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Buffer layers ; Cadmium ; Cadmium compounds ; Cd‐free ; co‐sublimations ; Crystal defects ; defects ; Energy conversion efficiency ; Energy gap ; Grain size ; Materials science ; Optimization ; Photovoltaic cells ; Sb 2(S,Se) 3 solar cells and modules ; Solar cells ; Sublimation ; Substrates ; Titanium dioxide ; V‐shaped graded band gaps</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (49), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3905-9459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Wu, Shaohang</creatorcontrib><creatorcontrib>Gao, Yanyan</creatorcontrib><creatorcontrib>Feng, Yang</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Xie, Yifei</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Zhu, Hongbing</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E.I.</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><title>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</title><title>Advanced functional materials</title><description>High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds. The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.</description><subject>Absorbers</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium compounds</subject><subject>Cd‐free</subject><subject>co‐sublimations</subject><subject>Crystal defects</subject><subject>defects</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Grain size</subject><subject>Materials science</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Sb 2(S,Se) 3 solar cells and modules</subject><subject>Solar cells</subject><subject>Sublimation</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>V‐shaped graded band gaps</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFa3rgfcKJh655VkljV9CS0KUXA3TJubNiWPOmmQ7vwJ_kZ_iamVrs49h8O58BFyzaDHAPiDTdKix4Fz0D6wE9JhPvM9ATw8Pd7s_Zxc1PUagAWBkB2yerRlQsd2Q_c6wBQXWzosl1mJ6LJySdPK0Um2XP18fb-ga11hywXSyCZF1hRtmjpEGs_5bXwf452gcZVbRyPM8_pvc1YlTY71JTlLbV7j1b92ydto-BpNvOnz-CnqT70NF4J5WqhQ-b7SDJFJLdHKlOuAgQ8adBIkGoVSDOZJykLJUSseWCaCOaACaVF0yc1hd-OqjwbrrVlXjSvbl4YHUvoQKqbblj60PrMcd2bjssK6nWFg9ijNHqU5ojT9wWh2dOIXDy5o-w</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Liu, Cong</creator><creator>Wu, Shaohang</creator><creator>Gao, Yanyan</creator><creator>Feng, Yang</creator><creator>Wang, Xinlong</creator><creator>Xie, Yifei</creator><creator>Zheng, Jianzha</creator><creator>Zhu, Hongbing</creator><creator>Li, Zhiqiang</creator><creator>Schropp, Ruud E.I.</creator><creator>Shen, Kai</creator><creator>Mai, Yaohua</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3905-9459</orcidid></search><sort><creationdate>20221202</creationdate><title>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</title><author>Liu, Cong ; Wu, Shaohang ; Gao, Yanyan ; Feng, Yang ; Wang, Xinlong ; Xie, Yifei ; Zheng, Jianzha ; Zhu, Hongbing ; Li, Zhiqiang ; Schropp, Ruud E.I. ; Shen, Kai ; Mai, Yaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2331-9358566591ee1494ea4f2971060909d7d9e35510bdf1842e9527a137b0e504ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium compounds</topic><topic>Cd‐free</topic><topic>co‐sublimations</topic><topic>Crystal defects</topic><topic>defects</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Grain size</topic><topic>Materials science</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Sb 2(S,Se) 3 solar cells and modules</topic><topic>Solar cells</topic><topic>Sublimation</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>V‐shaped graded band gaps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Wu, Shaohang</creatorcontrib><creatorcontrib>Gao, Yanyan</creatorcontrib><creatorcontrib>Feng, Yang</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Xie, Yifei</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Zhu, Hongbing</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E.I.</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Wu, Shaohang</au><au>Gao, Yanyan</au><au>Feng, Yang</au><au>Wang, Xinlong</au><au>Xie, Yifei</au><au>Zheng, Jianzha</au><au>Zhu, Hongbing</au><au>Li, Zhiqiang</au><au>Schropp, Ruud E.I.</au><au>Shen, Kai</au><au>Mai, Yaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-02</date><risdate>2022</risdate><volume>32</volume><issue>49</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>High‐efficiency antimony selenosulfide (Sb2(S,Se)3) solar cells are often fabricated by hydrothermal deposition and also comprise a CdS buffer layer. Whereas the use of toxic materials such as cadmium compounds should be avoided, both of these issues hinder scaling up to large areas and market access. For this reason, co‐sublimation is studied as a manufacturing process for the active layer as well as the use of Cd‐free buffer layers. To further improve the power conversion efficiency (PCE), a graded bandgap profile is designed for the absorber layer. A V‐shaped graded bandgap in the Sb2(S,Se)3 absorber layer is produced on a TiO2 substrate by co‐sublimation of a controlled varying molar ratio of Sb2Se3 and Sb2S3. Moreover, increasing the Se/S ratio improves the grain size and favorable (hk1) orientations, reduces the detrimental bulk defects in Sb2(S,Se)3 films. Consequently, the optimized Sb2(S,Se)3 solar cells reach a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. A PCE of 7.15% is further demonstrated for a Sb2(S,Se)3 monolithically interconnected minimodule with an active area of 12.32 cm2. This co‐sublimation graded bandgap technique provides a useful guidance for the optimization of a range of solar cells based on alloy compounds. The V‐shaped graded bandgap Sb2(S,Se)3 absorbers with the reduced shallow and deep defects are prepared by the easily scalable co‐sublimation technique. The optimized Sb2(S,Se)3 solar cells achieve a PCE of 9.02%, which is a record value for Cd‐free Sb‐based solar cells. Furthermore, a PCE of 7.15% is demonstrated for a larger area Sb2(S,Se)3 solar module with an active area of 12.32 cm2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209601</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3905-9459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-12, Vol.32 (49), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2744608519
source Wiley Online Library Journals Frontfile Complete
subjects Absorbers
Buffer layers
Cadmium
Cadmium compounds
Cd‐free
co‐sublimations
Crystal defects
defects
Energy conversion efficiency
Energy gap
Grain size
Materials science
Optimization
Photovoltaic cells
Sb 2(S,Se) 3 solar cells and modules
Solar cells
Sublimation
Substrates
Titanium dioxide
V‐shaped graded band gaps
title Band Gap and Defect Engineering for High‐Performance Cadmium‐free Sb2(S,Se)3 Solar Cells and Modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Gap%20and%20Defect%20Engineering%20for%20High%E2%80%90Performance%20Cadmium%E2%80%90free%20Sb2(S,Se)3%20Solar%20Cells%20and%20Modules&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Cong&rft.date=2022-12-02&rft.volume=32&rft.issue=49&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209601&rft_dat=%3Cproquest_wiley%3E2744608519%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2744608519&rft_id=info:pmid/&rfr_iscdi=true