X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection
Detecting sarcasm and verbal irony from people's subjective statements is crucial to understanding their intended meanings and real sentiments and positions in social scenarios. This paper describes the X-PuDu system that participated in SemEval-2022 Task 6, iSarcasmEval - Intended Sarcasm Dete...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Han, Yaqian Chai, Yekun Wang, Shuohuan Sun, Yu Huang, Hongyi Chen, Guanghao Xu, Yitong Yang, Yang |
description | Detecting sarcasm and verbal irony from people's subjective statements is crucial to understanding their intended meanings and real sentiments and positions in social scenarios. This paper describes the X-PuDu system that participated in SemEval-2022 Task 6, iSarcasmEval - Intended Sarcasm Detection in English and Arabic, which aims at detecting intended sarcasm in various settings of natural language understanding. Our solution finetunes pre-trained language models, such as ERNIE-M and DeBERTa, under the multilingual settings to recognize the irony from Arabic and English texts. Our system ranked second out of 43, and ninth out of 32 in Task A: one-sentence detection in English and Arabic; fifth out of 22 in Task B: binary multi-label classification in English; first out of 16, and fifth out of 13 in Task C: sentence-pair detection in English and Arabic. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2743821652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2743821652</sourcerecordid><originalsourceid>FETCH-proquest_journals_27438216523</originalsourceid><addsrcrecordid>eNqNijsKwkAUABdBMGju8MA6EN_mh51oxEJBMIWNhGfc6Opmo_vx_Fp4AKsZmBmwADmfRUWCOGKhtfc4jjHLMU15wE7HaO9XHsjBQXTlm1SEMSJUZB-QzWHnlZNK6qsnBVtBRn8d2t5Aqa9K2huQvsDC0Fk2cCDTkO1gJZxonOz1hA1bUlaEP47ZdF1Wy030NP3LC-vqe--N_qYa84QXOMtS5P9dH3ZnQUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743821652</pqid></control><display><type>article</type><title>X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection</title><source>Free E- Journals</source><creator>Han, Yaqian ; Chai, Yekun ; Wang, Shuohuan ; Sun, Yu ; Huang, Hongyi ; Chen, Guanghao ; Xu, Yitong ; Yang, Yang</creator><creatorcontrib>Han, Yaqian ; Chai, Yekun ; Wang, Shuohuan ; Sun, Yu ; Huang, Hongyi ; Chen, Guanghao ; Xu, Yitong ; Yang, Yang</creatorcontrib><description>Detecting sarcasm and verbal irony from people's subjective statements is crucial to understanding their intended meanings and real sentiments and positions in social scenarios. This paper describes the X-PuDu system that participated in SemEval-2022 Task 6, iSarcasmEval - Intended Sarcasm Detection in English and Arabic, which aims at detecting intended sarcasm in various settings of natural language understanding. Our solution finetunes pre-trained language models, such as ERNIE-M and DeBERTa, under the multilingual settings to recognize the irony from Arabic and English texts. Our system ranked second out of 43, and ninth out of 32 in Task A: one-sentence detection in English and Arabic; fifth out of 22 in Task B: binary multi-label classification in English; first out of 16, and fifth out of 13 in Task C: sentence-pair detection in English and Arabic.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Han, Yaqian</creatorcontrib><creatorcontrib>Chai, Yekun</creatorcontrib><creatorcontrib>Wang, Shuohuan</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Huang, Hongyi</creatorcontrib><creatorcontrib>Chen, Guanghao</creatorcontrib><creatorcontrib>Xu, Yitong</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection</title><title>arXiv.org</title><description>Detecting sarcasm and verbal irony from people's subjective statements is crucial to understanding their intended meanings and real sentiments and positions in social scenarios. This paper describes the X-PuDu system that participated in SemEval-2022 Task 6, iSarcasmEval - Intended Sarcasm Detection in English and Arabic, which aims at detecting intended sarcasm in various settings of natural language understanding. Our solution finetunes pre-trained language models, such as ERNIE-M and DeBERTa, under the multilingual settings to recognize the irony from Arabic and English texts. Our system ranked second out of 43, and ninth out of 32 in Task A: one-sentence detection in English and Arabic; fifth out of 22 in Task B: binary multi-label classification in English; first out of 16, and fifth out of 13 in Task C: sentence-pair detection in English and Arabic.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNijsKwkAUABdBMGju8MA6EN_mh51oxEJBMIWNhGfc6Opmo_vx_Fp4AKsZmBmwADmfRUWCOGKhtfc4jjHLMU15wE7HaO9XHsjBQXTlm1SEMSJUZB-QzWHnlZNK6qsnBVtBRn8d2t5Aqa9K2huQvsDC0Fk2cCDTkO1gJZxonOz1hA1bUlaEP47ZdF1Wy030NP3LC-vqe--N_qYa84QXOMtS5P9dH3ZnQUM</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Han, Yaqian</creator><creator>Chai, Yekun</creator><creator>Wang, Shuohuan</creator><creator>Sun, Yu</creator><creator>Huang, Hongyi</creator><creator>Chen, Guanghao</creator><creator>Xu, Yitong</creator><creator>Yang, Yang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221130</creationdate><title>X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection</title><author>Han, Yaqian ; Chai, Yekun ; Wang, Shuohuan ; Sun, Yu ; Huang, Hongyi ; Chen, Guanghao ; Xu, Yitong ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27438216523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Han, Yaqian</creatorcontrib><creatorcontrib>Chai, Yekun</creatorcontrib><creatorcontrib>Wang, Shuohuan</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Huang, Hongyi</creatorcontrib><creatorcontrib>Chen, Guanghao</creatorcontrib><creatorcontrib>Xu, Yitong</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yaqian</au><au>Chai, Yekun</au><au>Wang, Shuohuan</au><au>Sun, Yu</au><au>Huang, Hongyi</au><au>Chen, Guanghao</au><au>Xu, Yitong</au><au>Yang, Yang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection</atitle><jtitle>arXiv.org</jtitle><date>2022-11-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Detecting sarcasm and verbal irony from people's subjective statements is crucial to understanding their intended meanings and real sentiments and positions in social scenarios. This paper describes the X-PuDu system that participated in SemEval-2022 Task 6, iSarcasmEval - Intended Sarcasm Detection in English and Arabic, which aims at detecting intended sarcasm in various settings of natural language understanding. Our solution finetunes pre-trained language models, such as ERNIE-M and DeBERTa, under the multilingual settings to recognize the irony from Arabic and English texts. Our system ranked second out of 43, and ninth out of 32 in Task A: one-sentence detection in English and Arabic; fifth out of 22 in Task B: binary multi-label classification in English; first out of 16, and fifth out of 13 in Task C: sentence-pair detection in English and Arabic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2743821652 |
source | Free E- Journals |
title | X-PuDu at SemEval-2022 Task 6: Multilingual Learning for English and Arabic Sarcasm Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=X-PuDu%20at%20SemEval-2022%20Task%206:%20Multilingual%20Learning%20for%20English%20and%20Arabic%20Sarcasm%20Detection&rft.jtitle=arXiv.org&rft.au=Han,%20Yaqian&rft.date=2022-11-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2743821652%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2743821652&rft_id=info:pmid/&rfr_iscdi=true |