A mixture model approach to spectral clustering and application to textual data
The spectral clustering algorithm is a technique based on the properties of the pairwise similarity matrix coming from a suitable kernel function. It is a useful approach for high-dimensional data since the units are clustered in feature space with a reduced number of dimensions. In this paper, we c...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2022-12, Vol.31 (5), p.1071-1097 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1097 |
---|---|
container_issue | 5 |
container_start_page | 1071 |
container_title | Statistical methods & applications |
container_volume | 31 |
creator | Di Nuzzo, Cinzia Ingrassia, Salvatore |
description | The spectral clustering algorithm is a technique based on the properties of the pairwise similarity matrix coming from a suitable kernel function. It is a useful approach for high-dimensional data since the units are clustered in feature space with a reduced number of dimensions. In this paper, we consider a two-step model-based approach within the spectral clustering framework. Based on simulated data, first, we discuss criteria for selecting the number of clusters and analyzing the robustness of the model-based approach concerning the choice of the proximity parameters of the kernel functions. Finally, we consider applications of the spectral methods to cluster five real textual datasets and, in this framework, a new kernel function is also proposed. The approach is illustrated on the ground of a large numerical study based on both simulated and real datasets. |
doi_str_mv | 10.1007/s10260-022-00635-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2743528100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2743528100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-fbf1d17f981b3a5841724627ef8daf960b1aea45d1df7cdaa57d1780d4bdfe743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tt3jsvgFC3tR8Bam-dAu3bYmKei_N90K3jxlIM-8M_MgdM3oLaO0vIuM8oISyjmhtBCKyBO0YAUTZFWxt9NjXRGuGD1HFzHuKRVCSLFAuzU-NF9pDA4feutaDMMQejAfOPU4Ds6kAC027RiTC033jqGzE9M2BlLTdxOWXA7IlIUEl-jMQxvd1e-7RK8P9y-bJ7LdPT5v1ltihOKJ-Nozy0qft6sFqEqyksuCl85XFvyqoDUDB1JZZn1pLIAqM15RK2vrXSnFEt3MuXnbz9HFpPf9GLo8UvP8rXiVvWSKz5QJfYzBeT2E5gDhWzOqJ3F6FqezOH0Up6doMTfFYbrYhb_of7p-AG1scaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743528100</pqid></control><display><type>article</type><title>A mixture model approach to spectral clustering and application to textual data</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Di Nuzzo, Cinzia ; Ingrassia, Salvatore</creator><creatorcontrib>Di Nuzzo, Cinzia ; Ingrassia, Salvatore</creatorcontrib><description>The spectral clustering algorithm is a technique based on the properties of the pairwise similarity matrix coming from a suitable kernel function. It is a useful approach for high-dimensional data since the units are clustered in feature space with a reduced number of dimensions. In this paper, we consider a two-step model-based approach within the spectral clustering framework. Based on simulated data, first, we discuss criteria for selecting the number of clusters and analyzing the robustness of the model-based approach concerning the choice of the proximity parameters of the kernel functions. Finally, we consider applications of the spectral methods to cluster five real textual datasets and, in this framework, a new kernel function is also proposed. The approach is illustrated on the ground of a large numerical study based on both simulated and real datasets.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-022-00635-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Chemistry and Earth Sciences ; Cluster analysis ; Clustering ; Computer Science ; Datasets ; Economics ; Finance ; Health Sciences ; Humanities ; Insurance ; Kernel functions ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Probabilistic models ; Robustness (mathematics) ; Spectral methods ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Statistical methods & applications, 2022-12, Vol.31 (5), p.1071-1097</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-fbf1d17f981b3a5841724627ef8daf960b1aea45d1df7cdaa57d1780d4bdfe743</citedby><cites>FETCH-LOGICAL-c352t-fbf1d17f981b3a5841724627ef8daf960b1aea45d1df7cdaa57d1780d4bdfe743</cites><orcidid>0000-0003-2052-4226 ; 0000-0003-2062-8930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-022-00635-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-022-00635-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Di Nuzzo, Cinzia</creatorcontrib><creatorcontrib>Ingrassia, Salvatore</creatorcontrib><title>A mixture model approach to spectral clustering and application to textual data</title><title>Statistical methods & applications</title><addtitle>Stat Methods Appl</addtitle><description>The spectral clustering algorithm is a technique based on the properties of the pairwise similarity matrix coming from a suitable kernel function. It is a useful approach for high-dimensional data since the units are clustered in feature space with a reduced number of dimensions. In this paper, we consider a two-step model-based approach within the spectral clustering framework. Based on simulated data, first, we discuss criteria for selecting the number of clusters and analyzing the robustness of the model-based approach concerning the choice of the proximity parameters of the kernel functions. Finally, we consider applications of the spectral methods to cluster five real textual datasets and, in this framework, a new kernel function is also proposed. The approach is illustrated on the ground of a large numerical study based on both simulated and real datasets.</description><subject>Algorithms</subject><subject>Chemistry and Earth Sciences</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Economics</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Kernel functions</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probabilistic models</subject><subject>Robustness (mathematics)</subject><subject>Spectral methods</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tt3jsvgFC3tR8Bam-dAu3bYmKei_N90K3jxlIM-8M_MgdM3oLaO0vIuM8oISyjmhtBCKyBO0YAUTZFWxt9NjXRGuGD1HFzHuKRVCSLFAuzU-NF9pDA4feutaDMMQejAfOPU4Ds6kAC027RiTC033jqGzE9M2BlLTdxOWXA7IlIUEl-jMQxvd1e-7RK8P9y-bJ7LdPT5v1ltihOKJ-Nozy0qft6sFqEqyksuCl85XFvyqoDUDB1JZZn1pLIAqM15RK2vrXSnFEt3MuXnbz9HFpPf9GLo8UvP8rXiVvWSKz5QJfYzBeT2E5gDhWzOqJ3F6FqezOH0Up6doMTfFYbrYhb_of7p-AG1scaE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Di Nuzzo, Cinzia</creator><creator>Ingrassia, Salvatore</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2052-4226</orcidid><orcidid>https://orcid.org/0000-0003-2062-8930</orcidid></search><sort><creationdate>20221201</creationdate><title>A mixture model approach to spectral clustering and application to textual data</title><author>Di Nuzzo, Cinzia ; Ingrassia, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-fbf1d17f981b3a5841724627ef8daf960b1aea45d1df7cdaa57d1780d4bdfe743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Chemistry and Earth Sciences</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Economics</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Kernel functions</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probabilistic models</topic><topic>Robustness (mathematics)</topic><topic>Spectral methods</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nuzzo, Cinzia</creatorcontrib><creatorcontrib>Ingrassia, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nuzzo, Cinzia</au><au>Ingrassia, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mixture model approach to spectral clustering and application to textual data</atitle><jtitle>Statistical methods & applications</jtitle><stitle>Stat Methods Appl</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>31</volume><issue>5</issue><spage>1071</spage><epage>1097</epage><pages>1071-1097</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>The spectral clustering algorithm is a technique based on the properties of the pairwise similarity matrix coming from a suitable kernel function. It is a useful approach for high-dimensional data since the units are clustered in feature space with a reduced number of dimensions. In this paper, we consider a two-step model-based approach within the spectral clustering framework. Based on simulated data, first, we discuss criteria for selecting the number of clusters and analyzing the robustness of the model-based approach concerning the choice of the proximity parameters of the kernel functions. Finally, we consider applications of the spectral methods to cluster five real textual datasets and, in this framework, a new kernel function is also proposed. The approach is illustrated on the ground of a large numerical study based on both simulated and real datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-022-00635-4</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-2052-4226</orcidid><orcidid>https://orcid.org/0000-0003-2062-8930</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2510 |
ispartof | Statistical methods & applications, 2022-12, Vol.31 (5), p.1071-1097 |
issn | 1618-2510 1613-981X |
language | eng |
recordid | cdi_proquest_journals_2743528100 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Chemistry and Earth Sciences Cluster analysis Clustering Computer Science Datasets Economics Finance Health Sciences Humanities Insurance Kernel functions Law Management Mathematics and Statistics Medicine Original Paper Physics Probabilistic models Robustness (mathematics) Spectral methods Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences |
title | A mixture model approach to spectral clustering and application to textual data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mixture%20model%20approach%20to%20spectral%20clustering%20and%20application%20to%20textual%20data&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Di%20Nuzzo,%20Cinzia&rft.date=2022-12-01&rft.volume=31&rft.issue=5&rft.spage=1071&rft.epage=1097&rft.pages=1071-1097&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-022-00635-4&rft_dat=%3Cproquest_cross%3E2743528100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2743528100&rft_id=info:pmid/&rfr_iscdi=true |