Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control
We present an historical overview about the connections between the analysis of risk and the control of autonomous systems. We offer two main contributions. Our first contribution is to propose three overlapping paradigms to classify the vast body of literature: the worst-case, risk-neutral, and ris...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2022-10, Vol.311, p.103743, Article 103743 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103743 |
container_title | Artificial intelligence |
container_volume | 311 |
creator | Wang, Yuheng Chapman, Margaret P. |
description | We present an historical overview about the connections between the analysis of risk and the control of autonomous systems. We offer two main contributions. Our first contribution is to propose three overlapping paradigms to classify the vast body of literature: the worst-case, risk-neutral, and risk-averse paradigms. We consider an appropriate assessment for the risk of an autonomous system to depend on the application at hand. In contrast, it is typical to assess risk using an expectation, variance, or probability alone. Our second contribution is to unify the concepts of risk and autonomous systems. We achieve this by connecting approaches for quantifying and optimizing the risk that arises from a system's behavior across academic fields. The survey is highly multidisciplinary. We include research from the communities of reinforcement learning, stochastic and robust control theory, operations research, and formal verification. We describe both model-based and model-free methods, with emphasis on the former. Lastly, we highlight fruitful areas for further research. A key direction is to blend risk-averse model-based and model-free methods to enhance the real-time adaptive capabilities of systems to improve human and environmental welfare. |
doi_str_mv | 10.1016/j.artint.2022.103743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2743521833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370222000832</els_id><sourcerecordid>2743521833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ead842f2971ce9483bb0fd47001dfd594af20ed5999a56c2ad0be75b61ab8ae3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaP-hC0LVTPezY7qIQQl8QKJTshSyNiFzbciU5kL-vgrvuah7cuTNzELqnZEUJXT-2K-mjHeKKEcZSi5c5v0ALWpUsK2tGL9GCEJJnvCTsGt2E0KaS1zVdIPdlw3cmj-ADYDlFN7jeTQGHU4jQhye8wY23YPDBhuj8CctBYw8Khog1HKFzY5_ygI13PY4HwGOyGkFFewTsDHZjtL3ssHJD9K67RVdGdgHu_uIS7V9f9tv3bPf59rHd7DLFeR4zkLrKmWF1SRXUecWbhhidl4RQbXRR59IwAimpa1msFZOaNFAWzZrKppLAl-hhth29-5kgRNG6yQ9po2AJTsFoxXlS5bNKeReCByNGn471J0GJOJMVrZjJijNZMZNNY8_zGKQHjha8CMrCoEDbRCYK7ez_Br8pzoZ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743521833</pqid></control><display><type>article</type><title>Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yuheng ; Chapman, Margaret P.</creator><creatorcontrib>Wang, Yuheng ; Chapman, Margaret P.</creatorcontrib><description>We present an historical overview about the connections between the analysis of risk and the control of autonomous systems. We offer two main contributions. Our first contribution is to propose three overlapping paradigms to classify the vast body of literature: the worst-case, risk-neutral, and risk-averse paradigms. We consider an appropriate assessment for the risk of an autonomous system to depend on the application at hand. In contrast, it is typical to assess risk using an expectation, variance, or probability alone. Our second contribution is to unify the concepts of risk and autonomous systems. We achieve this by connecting approaches for quantifying and optimizing the risk that arises from a system's behavior across academic fields. The survey is highly multidisciplinary. We include research from the communities of reinforcement learning, stochastic and robust control theory, operations research, and formal verification. We describe both model-based and model-free methods, with emphasis on the former. Lastly, we highlight fruitful areas for further research. A key direction is to blend risk-averse model-based and model-free methods to enhance the real-time adaptive capabilities of systems to improve human and environmental welfare.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2022.103743</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Autonomous systems ; Control theory ; Intelligent systems ; Operations research ; Optimal control ; Optimization ; Reinforcement learning ; Risk analysis ; Risk and safety analysis ; Risk assessment ; Risk management ; Robust control</subject><ispartof>Artificial intelligence, 2022-10, Vol.311, p.103743, Article 103743</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ead842f2971ce9483bb0fd47001dfd594af20ed5999a56c2ad0be75b61ab8ae3</citedby><cites>FETCH-LOGICAL-c334t-ead842f2971ce9483bb0fd47001dfd594af20ed5999a56c2ad0be75b61ab8ae3</cites><orcidid>0000-0002-2483-6545 ; 0000-0003-4046-9834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0004370222000832$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Yuheng</creatorcontrib><creatorcontrib>Chapman, Margaret P.</creatorcontrib><title>Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control</title><title>Artificial intelligence</title><description>We present an historical overview about the connections between the analysis of risk and the control of autonomous systems. We offer two main contributions. Our first contribution is to propose three overlapping paradigms to classify the vast body of literature: the worst-case, risk-neutral, and risk-averse paradigms. We consider an appropriate assessment for the risk of an autonomous system to depend on the application at hand. In contrast, it is typical to assess risk using an expectation, variance, or probability alone. Our second contribution is to unify the concepts of risk and autonomous systems. We achieve this by connecting approaches for quantifying and optimizing the risk that arises from a system's behavior across academic fields. The survey is highly multidisciplinary. We include research from the communities of reinforcement learning, stochastic and robust control theory, operations research, and formal verification. We describe both model-based and model-free methods, with emphasis on the former. Lastly, we highlight fruitful areas for further research. A key direction is to blend risk-averse model-based and model-free methods to enhance the real-time adaptive capabilities of systems to improve human and environmental welfare.</description><subject>Autonomous systems</subject><subject>Control theory</subject><subject>Intelligent systems</subject><subject>Operations research</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Risk analysis</subject><subject>Risk and safety analysis</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Robust control</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaP-hC0LVTPezY7qIQQl8QKJTshSyNiFzbciU5kL-vgrvuah7cuTNzELqnZEUJXT-2K-mjHeKKEcZSi5c5v0ALWpUsK2tGL9GCEJJnvCTsGt2E0KaS1zVdIPdlw3cmj-ADYDlFN7jeTQGHU4jQhye8wY23YPDBhuj8CctBYw8Khog1HKFzY5_ygI13PY4HwGOyGkFFewTsDHZjtL3ssHJD9K67RVdGdgHu_uIS7V9f9tv3bPf59rHd7DLFeR4zkLrKmWF1SRXUecWbhhidl4RQbXRR59IwAimpa1msFZOaNFAWzZrKppLAl-hhth29-5kgRNG6yQ9po2AJTsFoxXlS5bNKeReCByNGn471J0GJOJMVrZjJijNZMZNNY8_zGKQHjha8CMrCoEDbRCYK7ez_Br8pzoZ3</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Wang, Yuheng</creator><creator>Chapman, Margaret P.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2483-6545</orcidid><orcidid>https://orcid.org/0000-0003-4046-9834</orcidid></search><sort><creationdate>202210</creationdate><title>Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control</title><author>Wang, Yuheng ; Chapman, Margaret P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ead842f2971ce9483bb0fd47001dfd594af20ed5999a56c2ad0be75b61ab8ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous systems</topic><topic>Control theory</topic><topic>Intelligent systems</topic><topic>Operations research</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Risk analysis</topic><topic>Risk and safety analysis</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Robust control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuheng</creatorcontrib><creatorcontrib>Chapman, Margaret P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuheng</au><au>Chapman, Margaret P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control</atitle><jtitle>Artificial intelligence</jtitle><date>2022-10</date><risdate>2022</risdate><volume>311</volume><spage>103743</spage><pages>103743-</pages><artnum>103743</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>We present an historical overview about the connections between the analysis of risk and the control of autonomous systems. We offer two main contributions. Our first contribution is to propose three overlapping paradigms to classify the vast body of literature: the worst-case, risk-neutral, and risk-averse paradigms. We consider an appropriate assessment for the risk of an autonomous system to depend on the application at hand. In contrast, it is typical to assess risk using an expectation, variance, or probability alone. Our second contribution is to unify the concepts of risk and autonomous systems. We achieve this by connecting approaches for quantifying and optimizing the risk that arises from a system's behavior across academic fields. The survey is highly multidisciplinary. We include research from the communities of reinforcement learning, stochastic and robust control theory, operations research, and formal verification. We describe both model-based and model-free methods, with emphasis on the former. Lastly, we highlight fruitful areas for further research. A key direction is to blend risk-averse model-based and model-free methods to enhance the real-time adaptive capabilities of systems to improve human and environmental welfare.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2022.103743</doi><orcidid>https://orcid.org/0000-0002-2483-6545</orcidid><orcidid>https://orcid.org/0000-0003-4046-9834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2022-10, Vol.311, p.103743, Article 103743 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_journals_2743521833 |
source | Elsevier ScienceDirect Journals |
subjects | Autonomous systems Control theory Intelligent systems Operations research Optimal control Optimization Reinforcement learning Risk analysis Risk and safety analysis Risk assessment Risk management Robust control |
title | Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-averse%20autonomous%20systems:%20A%20brief%20history%20and%20recent%20developments%20from%20the%20perspective%20of%20optimal%20control&rft.jtitle=Artificial%20intelligence&rft.au=Wang,%20Yuheng&rft.date=2022-10&rft.volume=311&rft.spage=103743&rft.pages=103743-&rft.artnum=103743&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2022.103743&rft_dat=%3Cproquest_cross%3E2743521833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2743521833&rft_id=info:pmid/&rft_els_id=S0004370222000832&rfr_iscdi=true |