Low Temperature Thermal and Solar Heating Carbon‐Free Hydrogen Production from Ammonia Using Nickel Single Atom Catalysts

Catalytic splitting NH3 to H2 is one of the foundations for building a carbon‐free H2 energy system but requires NH3 splitting catalysts that are highly active and durable at low temperatures. Although various non‐noble catalysts have been designed, NH3 splitting still operates at relatively high te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-12, Vol.12 (45), p.n/a
Hauptverfasser: Li, Yaguang, Guan, Qingqing, Huang, Guangyao, Yuan, Dachao, Xie, Fei, Li, Kailuan, Zhang, Zhibo, San, Xingyuan, Ye, Jinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced energy materials
container_volume 12
creator Li, Yaguang
Guan, Qingqing
Huang, Guangyao
Yuan, Dachao
Xie, Fei
Li, Kailuan
Zhang, Zhibo
San, Xingyuan
Ye, Jinhua
description Catalytic splitting NH3 to H2 is one of the foundations for building a carbon‐free H2 energy system but requires NH3 splitting catalysts that are highly active and durable at low temperatures. Although various non‐noble catalysts have been designed, NH3 splitting still operates at relatively high temperatures (600–850 °C). Herein, theoretical calculations predict that the Ni single atoms can change the bonding mode of NiN from covalent bond to ionic bond to boost the NH3 splitting activity. Further, Ni single atoms supported on CeO2 nanosheets (SA Ni/CeO2) are synthesized by the sol–gel method, which exhibits a robust 3.544 mmol g−1 min−1 of H2 yield speed of NH3 splitting at 300 °C, superior to all non‐noble catalysts and most of the noble catalysts. Combing with the homemade solar heating device, the one sun‐driven NH3 splitting over SA Ni/CeO2 shows a stable H2 yield of 1.58 mmol g−1 min−1, 100 times the record value of advanced weak solar‐powered NH3 splitting, demonstrating the potential for practical application in carbon‐free H2 systems. The Ni single atoms show a H2 yield of 3.544 mmol g−1 min−1 of NH3 splitting at 300 °C and H2 production efficiency of 1.58 mmol g−1 min−1 solar heating NH3 splitting under one solar irradiance, 100 times higher than the record values of advanced weak solar driven NH3 splitting.
doi_str_mv 10.1002/aenm.202202459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742938823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742938823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-c673f91ded8c223535846831468516839b55c8e95ce027a7416b4d57fb5260e63</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsNRuXQ-4Tp2fTH6WIbRWqFVouw6T5KamJjN1JqEUNz6Cz-iTOKVSl14ud87ifHe4B6FbSsaUEHYvQbVjRphrX8QXaEAD6ntB5JPLs-bsGo2s3RJXfkwJ5wP0Mdd7vIJ2B0Z2vQG8egXTygZLVeKlbqTBM5BdrTY4lSbX6vvza2oA8OxQGr0BhV-MLvuiq7XCldEtTtpWq1ritT1Ci7p4gwYvnW4AJ50zpLKTzcF29gZdVbKxMPp9h2g9nazSmTd_fnhMk7lXcBrGXhGEvIppCWVUMMYFF5HvjqFuCOpEnAtRRBCLAggLZejTIPdLEVa5YAGBgA_R3Wnvzuj3HmyXbXVvlPsyY6HPYh5FjDvX-OQqjLbWQJXtTN1Kc8goyY4ZZ8eMs3PGDohPwL5u4PCPO0smi6c_9gcWN4CM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742938823</pqid></control><display><type>article</type><title>Low Temperature Thermal and Solar Heating Carbon‐Free Hydrogen Production from Ammonia Using Nickel Single Atom Catalysts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yaguang ; Guan, Qingqing ; Huang, Guangyao ; Yuan, Dachao ; Xie, Fei ; Li, Kailuan ; Zhang, Zhibo ; San, Xingyuan ; Ye, Jinhua</creator><creatorcontrib>Li, Yaguang ; Guan, Qingqing ; Huang, Guangyao ; Yuan, Dachao ; Xie, Fei ; Li, Kailuan ; Zhang, Zhibo ; San, Xingyuan ; Ye, Jinhua</creatorcontrib><description>Catalytic splitting NH3 to H2 is one of the foundations for building a carbon‐free H2 energy system but requires NH3 splitting catalysts that are highly active and durable at low temperatures. Although various non‐noble catalysts have been designed, NH3 splitting still operates at relatively high temperatures (600–850 °C). Herein, theoretical calculations predict that the Ni single atoms can change the bonding mode of NiN from covalent bond to ionic bond to boost the NH3 splitting activity. Further, Ni single atoms supported on CeO2 nanosheets (SA Ni/CeO2) are synthesized by the sol–gel method, which exhibits a robust 3.544 mmol g−1 min−1 of H2 yield speed of NH3 splitting at 300 °C, superior to all non‐noble catalysts and most of the noble catalysts. Combing with the homemade solar heating device, the one sun‐driven NH3 splitting over SA Ni/CeO2 shows a stable H2 yield of 1.58 mmol g−1 min−1, 100 times the record value of advanced weak solar‐powered NH3 splitting, demonstrating the potential for practical application in carbon‐free H2 systems. The Ni single atoms show a H2 yield of 3.544 mmol g−1 min−1 of NH3 splitting at 300 °C and H2 production efficiency of 1.58 mmol g−1 min−1 solar heating NH3 splitting under one solar irradiance, 100 times higher than the record values of advanced weak solar driven NH3 splitting.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202202459</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon ; carbon free hydrogen systems ; Cerium oxides ; Chemical bonds ; Covalent bonds ; High temperature ; hydrogen ; Hydrogen production ; Low temperature ; NH 3 splitting ; Ni single atoms ; photothermal catalysis ; Single atom catalysts ; Sol-gel processes ; Solar heating ; Splitting</subject><ispartof>Advanced energy materials, 2022-12, Vol.12 (45), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-c673f91ded8c223535846831468516839b55c8e95ce027a7416b4d57fb5260e63</citedby><cites>FETCH-LOGICAL-c3179-c673f91ded8c223535846831468516839b55c8e95ce027a7416b4d57fb5260e63</cites><orcidid>0000-0001-6424-7959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202202459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202202459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Yaguang</creatorcontrib><creatorcontrib>Guan, Qingqing</creatorcontrib><creatorcontrib>Huang, Guangyao</creatorcontrib><creatorcontrib>Yuan, Dachao</creatorcontrib><creatorcontrib>Xie, Fei</creatorcontrib><creatorcontrib>Li, Kailuan</creatorcontrib><creatorcontrib>Zhang, Zhibo</creatorcontrib><creatorcontrib>San, Xingyuan</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><title>Low Temperature Thermal and Solar Heating Carbon‐Free Hydrogen Production from Ammonia Using Nickel Single Atom Catalysts</title><title>Advanced energy materials</title><description>Catalytic splitting NH3 to H2 is one of the foundations for building a carbon‐free H2 energy system but requires NH3 splitting catalysts that are highly active and durable at low temperatures. Although various non‐noble catalysts have been designed, NH3 splitting still operates at relatively high temperatures (600–850 °C). Herein, theoretical calculations predict that the Ni single atoms can change the bonding mode of NiN from covalent bond to ionic bond to boost the NH3 splitting activity. Further, Ni single atoms supported on CeO2 nanosheets (SA Ni/CeO2) are synthesized by the sol–gel method, which exhibits a robust 3.544 mmol g−1 min−1 of H2 yield speed of NH3 splitting at 300 °C, superior to all non‐noble catalysts and most of the noble catalysts. Combing with the homemade solar heating device, the one sun‐driven NH3 splitting over SA Ni/CeO2 shows a stable H2 yield of 1.58 mmol g−1 min−1, 100 times the record value of advanced weak solar‐powered NH3 splitting, demonstrating the potential for practical application in carbon‐free H2 systems. The Ni single atoms show a H2 yield of 3.544 mmol g−1 min−1 of NH3 splitting at 300 °C and H2 production efficiency of 1.58 mmol g−1 min−1 solar heating NH3 splitting under one solar irradiance, 100 times higher than the record values of advanced weak solar driven NH3 splitting.</description><subject>Ammonia</subject><subject>Carbon</subject><subject>carbon free hydrogen systems</subject><subject>Cerium oxides</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>High temperature</subject><subject>hydrogen</subject><subject>Hydrogen production</subject><subject>Low temperature</subject><subject>NH 3 splitting</subject><subject>Ni single atoms</subject><subject>photothermal catalysis</subject><subject>Single atom catalysts</subject><subject>Sol-gel processes</subject><subject>Solar heating</subject><subject>Splitting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsNRuXQ-4Tp2fTH6WIbRWqFVouw6T5KamJjN1JqEUNz6Cz-iTOKVSl14ud87ifHe4B6FbSsaUEHYvQbVjRphrX8QXaEAD6ntB5JPLs-bsGo2s3RJXfkwJ5wP0Mdd7vIJ2B0Z2vQG8egXTygZLVeKlbqTBM5BdrTY4lSbX6vvza2oA8OxQGr0BhV-MLvuiq7XCldEtTtpWq1ritT1Ci7p4gwYvnW4AJ50zpLKTzcF29gZdVbKxMPp9h2g9nazSmTd_fnhMk7lXcBrGXhGEvIppCWVUMMYFF5HvjqFuCOpEnAtRRBCLAggLZejTIPdLEVa5YAGBgA_R3Wnvzuj3HmyXbXVvlPsyY6HPYh5FjDvX-OQqjLbWQJXtTN1Kc8goyY4ZZ8eMs3PGDohPwL5u4PCPO0smi6c_9gcWN4CM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Yaguang</creator><creator>Guan, Qingqing</creator><creator>Huang, Guangyao</creator><creator>Yuan, Dachao</creator><creator>Xie, Fei</creator><creator>Li, Kailuan</creator><creator>Zhang, Zhibo</creator><creator>San, Xingyuan</creator><creator>Ye, Jinhua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6424-7959</orcidid></search><sort><creationdate>20221201</creationdate><title>Low Temperature Thermal and Solar Heating Carbon‐Free Hydrogen Production from Ammonia Using Nickel Single Atom Catalysts</title><author>Li, Yaguang ; Guan, Qingqing ; Huang, Guangyao ; Yuan, Dachao ; Xie, Fei ; Li, Kailuan ; Zhang, Zhibo ; San, Xingyuan ; Ye, Jinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-c673f91ded8c223535846831468516839b55c8e95ce027a7416b4d57fb5260e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Carbon</topic><topic>carbon free hydrogen systems</topic><topic>Cerium oxides</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>High temperature</topic><topic>hydrogen</topic><topic>Hydrogen production</topic><topic>Low temperature</topic><topic>NH 3 splitting</topic><topic>Ni single atoms</topic><topic>photothermal catalysis</topic><topic>Single atom catalysts</topic><topic>Sol-gel processes</topic><topic>Solar heating</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yaguang</creatorcontrib><creatorcontrib>Guan, Qingqing</creatorcontrib><creatorcontrib>Huang, Guangyao</creatorcontrib><creatorcontrib>Yuan, Dachao</creatorcontrib><creatorcontrib>Xie, Fei</creatorcontrib><creatorcontrib>Li, Kailuan</creatorcontrib><creatorcontrib>Zhang, Zhibo</creatorcontrib><creatorcontrib>San, Xingyuan</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yaguang</au><au>Guan, Qingqing</au><au>Huang, Guangyao</au><au>Yuan, Dachao</au><au>Xie, Fei</au><au>Li, Kailuan</au><au>Zhang, Zhibo</au><au>San, Xingyuan</au><au>Ye, Jinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Thermal and Solar Heating Carbon‐Free Hydrogen Production from Ammonia Using Nickel Single Atom Catalysts</atitle><jtitle>Advanced energy materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>45</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Catalytic splitting NH3 to H2 is one of the foundations for building a carbon‐free H2 energy system but requires NH3 splitting catalysts that are highly active and durable at low temperatures. Although various non‐noble catalysts have been designed, NH3 splitting still operates at relatively high temperatures (600–850 °C). Herein, theoretical calculations predict that the Ni single atoms can change the bonding mode of NiN from covalent bond to ionic bond to boost the NH3 splitting activity. Further, Ni single atoms supported on CeO2 nanosheets (SA Ni/CeO2) are synthesized by the sol–gel method, which exhibits a robust 3.544 mmol g−1 min−1 of H2 yield speed of NH3 splitting at 300 °C, superior to all non‐noble catalysts and most of the noble catalysts. Combing with the homemade solar heating device, the one sun‐driven NH3 splitting over SA Ni/CeO2 shows a stable H2 yield of 1.58 mmol g−1 min−1, 100 times the record value of advanced weak solar‐powered NH3 splitting, demonstrating the potential for practical application in carbon‐free H2 systems. The Ni single atoms show a H2 yield of 3.544 mmol g−1 min−1 of NH3 splitting at 300 °C and H2 production efficiency of 1.58 mmol g−1 min−1 solar heating NH3 splitting under one solar irradiance, 100 times higher than the record values of advanced weak solar driven NH3 splitting.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202202459</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6424-7959</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-12, Vol.12 (45), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2742938823
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Carbon
carbon free hydrogen systems
Cerium oxides
Chemical bonds
Covalent bonds
High temperature
hydrogen
Hydrogen production
Low temperature
NH 3 splitting
Ni single atoms
photothermal catalysis
Single atom catalysts
Sol-gel processes
Solar heating
Splitting
title Low Temperature Thermal and Solar Heating Carbon‐Free Hydrogen Production from Ammonia Using Nickel Single Atom Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Thermal%20and%20Solar%20Heating%20Carbon%E2%80%90Free%20Hydrogen%20Production%20from%20Ammonia%20Using%20Nickel%20Single%20Atom%20Catalysts&rft.jtitle=Advanced%20energy%20materials&rft.au=Li,%20Yaguang&rft.date=2022-12-01&rft.volume=12&rft.issue=45&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202202459&rft_dat=%3Cproquest_cross%3E2742938823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742938823&rft_id=info:pmid/&rfr_iscdi=true