Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications

The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Aprahamian, Ani, Margaryan, Amur, Kakoyan, Vanik, Zhamkochyan, Simon, Abrahamyan, Sergey, Elbakyan, Hayk, Mayilyan, Samvel, Piloyan, Arpine, Vardanyan, Henrik, Hamlet Zohrabyan, Gevorgian, Lekdar, Ayvazyan, Robert, Papyan, Artashes, Ayvazyan, Garnik, Ghalumyan, Arsen, Margaryan, Narek, Rostomyan, Hasmik, Safaryan, Anna, Grigoryan, Bagrat, Vardanyan, Ashot, Yeremyan, Arsham, Annand, John, Livingston, Kenneth, Montgomery, Rachel, Achenbach, Patrick, Pochodzalla, Josef, Balabanski, Dimiter L, Nakamura, Satoshi N, Sharyy, Viatcheslav, Yvon, Dominique, Brodeur, Maxime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Aprahamian, Ani
Margaryan, Amur
Kakoyan, Vanik
Zhamkochyan, Simon
Abrahamyan, Sergey
Elbakyan, Hayk
Mayilyan, Samvel
Piloyan, Arpine
Vardanyan, Henrik
Hamlet Zohrabyan
Gevorgian, Lekdar
Ayvazyan, Robert
Papyan, Artashes
Ayvazyan, Garnik
Ghalumyan, Arsen
Margaryan, Narek
Rostomyan, Hasmik
Safaryan, Anna
Grigoryan, Bagrat
Vardanyan, Ashot
Yeremyan, Arsham
Annand, John
Livingston, Kenneth
Montgomery, Rachel
Achenbach, Patrick
Pochodzalla, Josef
Balabanski, Dimiter L
Nakamura, Satoshi N
Sharyy, Viatcheslav
Yvon, Dominique
Brodeur, Maxime
description The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2742869750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742869750</sourcerecordid><originalsourceid>FETCH-proquest_journals_27428697503</originalsourceid><addsrcrecordid>eNqNyr0KwjAYheEgCBbtPXzgokMhJv1zDGJxcSnZS0hSTalJbVrBuzeCFyBneIfzLFBEKD0kZUrICsXedxhjkhcky2iErky9hJVaQS2UcVCN-jlrK9_AzcPYG7BhEDXjs4cdq8P4HriWd2sCA2HVF_RGisk46zdo2Yre6_jXNdpWZ366JMPogvdT07l5tOFqSJGSMj8WGab_qQ_OiDxy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742869750</pqid></control><display><type>article</type><title>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</title><source>Freely Accessible Journals</source><creator>Aprahamian, Ani ; Margaryan, Amur ; Kakoyan, Vanik ; Zhamkochyan, Simon ; Abrahamyan, Sergey ; Elbakyan, Hayk ; Mayilyan, Samvel ; Piloyan, Arpine ; Vardanyan, Henrik ; Hamlet Zohrabyan ; Gevorgian, Lekdar ; Ayvazyan, Robert ; Papyan, Artashes ; Ayvazyan, Garnik ; Ghalumyan, Arsen ; Margaryan, Narek ; Rostomyan, Hasmik ; Safaryan, Anna ; Grigoryan, Bagrat ; Vardanyan, Ashot ; Yeremyan, Arsham ; Annand, John ; Livingston, Kenneth ; Montgomery, Rachel ; Achenbach, Patrick ; Pochodzalla, Josef ; Balabanski, Dimiter L ; Nakamura, Satoshi N ; Sharyy, Viatcheslav ; Yvon, Dominique ; Brodeur, Maxime</creator><creatorcontrib>Aprahamian, Ani ; Margaryan, Amur ; Kakoyan, Vanik ; Zhamkochyan, Simon ; Abrahamyan, Sergey ; Elbakyan, Hayk ; Mayilyan, Samvel ; Piloyan, Arpine ; Vardanyan, Henrik ; Hamlet Zohrabyan ; Gevorgian, Lekdar ; Ayvazyan, Robert ; Papyan, Artashes ; Ayvazyan, Garnik ; Ghalumyan, Arsen ; Margaryan, Narek ; Rostomyan, Hasmik ; Safaryan, Anna ; Grigoryan, Bagrat ; Vardanyan, Ashot ; Yeremyan, Arsham ; Annand, John ; Livingston, Kenneth ; Montgomery, Rachel ; Achenbach, Patrick ; Pochodzalla, Josef ; Balabanski, Dimiter L ; Nakamura, Satoshi N ; Sharyy, Viatcheslav ; Yvon, Dominique ; Brodeur, Maxime</creatorcontrib><description>The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biological properties ; Correlation ; Depletion ; Electrons ; Graphene ; Microchannel plates ; Microchannels ; Microscopy ; Optical microscopy ; Photomultiplier tubes ; Photons ; Position sensing ; Positron emission ; Radio frequency ; Stimulated emission ; Streak cameras ; Time correlation functions ; Tomography</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Aprahamian, Ani</creatorcontrib><creatorcontrib>Margaryan, Amur</creatorcontrib><creatorcontrib>Kakoyan, Vanik</creatorcontrib><creatorcontrib>Zhamkochyan, Simon</creatorcontrib><creatorcontrib>Abrahamyan, Sergey</creatorcontrib><creatorcontrib>Elbakyan, Hayk</creatorcontrib><creatorcontrib>Mayilyan, Samvel</creatorcontrib><creatorcontrib>Piloyan, Arpine</creatorcontrib><creatorcontrib>Vardanyan, Henrik</creatorcontrib><creatorcontrib>Hamlet Zohrabyan</creatorcontrib><creatorcontrib>Gevorgian, Lekdar</creatorcontrib><creatorcontrib>Ayvazyan, Robert</creatorcontrib><creatorcontrib>Papyan, Artashes</creatorcontrib><creatorcontrib>Ayvazyan, Garnik</creatorcontrib><creatorcontrib>Ghalumyan, Arsen</creatorcontrib><creatorcontrib>Margaryan, Narek</creatorcontrib><creatorcontrib>Rostomyan, Hasmik</creatorcontrib><creatorcontrib>Safaryan, Anna</creatorcontrib><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Vardanyan, Ashot</creatorcontrib><creatorcontrib>Yeremyan, Arsham</creatorcontrib><creatorcontrib>Annand, John</creatorcontrib><creatorcontrib>Livingston, Kenneth</creatorcontrib><creatorcontrib>Montgomery, Rachel</creatorcontrib><creatorcontrib>Achenbach, Patrick</creatorcontrib><creatorcontrib>Pochodzalla, Josef</creatorcontrib><creatorcontrib>Balabanski, Dimiter L</creatorcontrib><creatorcontrib>Nakamura, Satoshi N</creatorcontrib><creatorcontrib>Sharyy, Viatcheslav</creatorcontrib><creatorcontrib>Yvon, Dominique</creatorcontrib><creatorcontrib>Brodeur, Maxime</creatorcontrib><title>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</title><title>arXiv.org</title><description>The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.</description><subject>Biological properties</subject><subject>Correlation</subject><subject>Depletion</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Photomultiplier tubes</subject><subject>Photons</subject><subject>Position sensing</subject><subject>Positron emission</subject><subject>Radio frequency</subject><subject>Stimulated emission</subject><subject>Streak cameras</subject><subject>Time correlation functions</subject><subject>Tomography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAYheEgCBbtPXzgokMhJv1zDGJxcSnZS0hSTalJbVrBuzeCFyBneIfzLFBEKD0kZUrICsXedxhjkhcky2iErky9hJVaQS2UcVCN-jlrK9_AzcPYG7BhEDXjs4cdq8P4HriWd2sCA2HVF_RGisk46zdo2Yre6_jXNdpWZ366JMPogvdT07l5tOFqSJGSMj8WGab_qQ_OiDxy</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Aprahamian, Ani</creator><creator>Margaryan, Amur</creator><creator>Kakoyan, Vanik</creator><creator>Zhamkochyan, Simon</creator><creator>Abrahamyan, Sergey</creator><creator>Elbakyan, Hayk</creator><creator>Mayilyan, Samvel</creator><creator>Piloyan, Arpine</creator><creator>Vardanyan, Henrik</creator><creator>Hamlet Zohrabyan</creator><creator>Gevorgian, Lekdar</creator><creator>Ayvazyan, Robert</creator><creator>Papyan, Artashes</creator><creator>Ayvazyan, Garnik</creator><creator>Ghalumyan, Arsen</creator><creator>Margaryan, Narek</creator><creator>Rostomyan, Hasmik</creator><creator>Safaryan, Anna</creator><creator>Grigoryan, Bagrat</creator><creator>Vardanyan, Ashot</creator><creator>Yeremyan, Arsham</creator><creator>Annand, John</creator><creator>Livingston, Kenneth</creator><creator>Montgomery, Rachel</creator><creator>Achenbach, Patrick</creator><creator>Pochodzalla, Josef</creator><creator>Balabanski, Dimiter L</creator><creator>Nakamura, Satoshi N</creator><creator>Sharyy, Viatcheslav</creator><creator>Yvon, Dominique</creator><creator>Brodeur, Maxime</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221129</creationdate><title>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</title><author>Aprahamian, Ani ; Margaryan, Amur ; Kakoyan, Vanik ; Zhamkochyan, Simon ; Abrahamyan, Sergey ; Elbakyan, Hayk ; Mayilyan, Samvel ; Piloyan, Arpine ; Vardanyan, Henrik ; Hamlet Zohrabyan ; Gevorgian, Lekdar ; Ayvazyan, Robert ; Papyan, Artashes ; Ayvazyan, Garnik ; Ghalumyan, Arsen ; Margaryan, Narek ; Rostomyan, Hasmik ; Safaryan, Anna ; Grigoryan, Bagrat ; Vardanyan, Ashot ; Yeremyan, Arsham ; Annand, John ; Livingston, Kenneth ; Montgomery, Rachel ; Achenbach, Patrick ; Pochodzalla, Josef ; Balabanski, Dimiter L ; Nakamura, Satoshi N ; Sharyy, Viatcheslav ; Yvon, Dominique ; Brodeur, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27428697503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological properties</topic><topic>Correlation</topic><topic>Depletion</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Photomultiplier tubes</topic><topic>Photons</topic><topic>Position sensing</topic><topic>Positron emission</topic><topic>Radio frequency</topic><topic>Stimulated emission</topic><topic>Streak cameras</topic><topic>Time correlation functions</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Aprahamian, Ani</creatorcontrib><creatorcontrib>Margaryan, Amur</creatorcontrib><creatorcontrib>Kakoyan, Vanik</creatorcontrib><creatorcontrib>Zhamkochyan, Simon</creatorcontrib><creatorcontrib>Abrahamyan, Sergey</creatorcontrib><creatorcontrib>Elbakyan, Hayk</creatorcontrib><creatorcontrib>Mayilyan, Samvel</creatorcontrib><creatorcontrib>Piloyan, Arpine</creatorcontrib><creatorcontrib>Vardanyan, Henrik</creatorcontrib><creatorcontrib>Hamlet Zohrabyan</creatorcontrib><creatorcontrib>Gevorgian, Lekdar</creatorcontrib><creatorcontrib>Ayvazyan, Robert</creatorcontrib><creatorcontrib>Papyan, Artashes</creatorcontrib><creatorcontrib>Ayvazyan, Garnik</creatorcontrib><creatorcontrib>Ghalumyan, Arsen</creatorcontrib><creatorcontrib>Margaryan, Narek</creatorcontrib><creatorcontrib>Rostomyan, Hasmik</creatorcontrib><creatorcontrib>Safaryan, Anna</creatorcontrib><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Vardanyan, Ashot</creatorcontrib><creatorcontrib>Yeremyan, Arsham</creatorcontrib><creatorcontrib>Annand, John</creatorcontrib><creatorcontrib>Livingston, Kenneth</creatorcontrib><creatorcontrib>Montgomery, Rachel</creatorcontrib><creatorcontrib>Achenbach, Patrick</creatorcontrib><creatorcontrib>Pochodzalla, Josef</creatorcontrib><creatorcontrib>Balabanski, Dimiter L</creatorcontrib><creatorcontrib>Nakamura, Satoshi N</creatorcontrib><creatorcontrib>Sharyy, Viatcheslav</creatorcontrib><creatorcontrib>Yvon, Dominique</creatorcontrib><creatorcontrib>Brodeur, Maxime</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprahamian, Ani</au><au>Margaryan, Amur</au><au>Kakoyan, Vanik</au><au>Zhamkochyan, Simon</au><au>Abrahamyan, Sergey</au><au>Elbakyan, Hayk</au><au>Mayilyan, Samvel</au><au>Piloyan, Arpine</au><au>Vardanyan, Henrik</au><au>Hamlet Zohrabyan</au><au>Gevorgian, Lekdar</au><au>Ayvazyan, Robert</au><au>Papyan, Artashes</au><au>Ayvazyan, Garnik</au><au>Ghalumyan, Arsen</au><au>Margaryan, Narek</au><au>Rostomyan, Hasmik</au><au>Safaryan, Anna</au><au>Grigoryan, Bagrat</au><au>Vardanyan, Ashot</au><au>Yeremyan, Arsham</au><au>Annand, John</au><au>Livingston, Kenneth</au><au>Montgomery, Rachel</au><au>Achenbach, Patrick</au><au>Pochodzalla, Josef</au><au>Balabanski, Dimiter L</au><au>Nakamura, Satoshi N</au><au>Sharyy, Viatcheslav</au><au>Yvon, Dominique</au><au>Brodeur, Maxime</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</atitle><jtitle>arXiv.org</jtitle><date>2022-11-29</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2742869750
source Freely Accessible Journals
subjects Biological properties
Correlation
Depletion
Electrons
Graphene
Microchannel plates
Microchannels
Microscopy
Optical microscopy
Photomultiplier tubes
Photons
Position sensing
Positron emission
Radio frequency
Stimulated emission
Streak cameras
Time correlation functions
Tomography
title Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Advanced%20Radio%20Frequency%20Timing%20AppaRATus%20(ARARAT)%20Technique%20and%20Applications&rft.jtitle=arXiv.org&rft.au=Aprahamian,%20Ani&rft.date=2022-11-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2742869750%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742869750&rft_id=info:pmid/&rfr_iscdi=true