Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications
The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position dis...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aprahamian, Ani Margaryan, Amur Kakoyan, Vanik Zhamkochyan, Simon Abrahamyan, Sergey Elbakyan, Hayk Mayilyan, Samvel Piloyan, Arpine Vardanyan, Henrik Hamlet Zohrabyan Gevorgian, Lekdar Ayvazyan, Robert Papyan, Artashes Ayvazyan, Garnik Ghalumyan, Arsen Margaryan, Narek Rostomyan, Hasmik Safaryan, Anna Grigoryan, Bagrat Vardanyan, Ashot Yeremyan, Arsham Annand, John Livingston, Kenneth Montgomery, Rachel Achenbach, Patrick Pochodzalla, Josef Balabanski, Dimiter L Nakamura, Satoshi N Sharyy, Viatcheslav Yvon, Dominique Brodeur, Maxime |
description | The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2742869750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742869750</sourcerecordid><originalsourceid>FETCH-proquest_journals_27428697503</originalsourceid><addsrcrecordid>eNqNyr0KwjAYheEgCBbtPXzgokMhJv1zDGJxcSnZS0hSTalJbVrBuzeCFyBneIfzLFBEKD0kZUrICsXedxhjkhcky2iErky9hJVaQS2UcVCN-jlrK9_AzcPYG7BhEDXjs4cdq8P4HriWd2sCA2HVF_RGisk46zdo2Yre6_jXNdpWZ366JMPogvdT07l5tOFqSJGSMj8WGab_qQ_OiDxy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742869750</pqid></control><display><type>article</type><title>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</title><source>Freely Accessible Journals</source><creator>Aprahamian, Ani ; Margaryan, Amur ; Kakoyan, Vanik ; Zhamkochyan, Simon ; Abrahamyan, Sergey ; Elbakyan, Hayk ; Mayilyan, Samvel ; Piloyan, Arpine ; Vardanyan, Henrik ; Hamlet Zohrabyan ; Gevorgian, Lekdar ; Ayvazyan, Robert ; Papyan, Artashes ; Ayvazyan, Garnik ; Ghalumyan, Arsen ; Margaryan, Narek ; Rostomyan, Hasmik ; Safaryan, Anna ; Grigoryan, Bagrat ; Vardanyan, Ashot ; Yeremyan, Arsham ; Annand, John ; Livingston, Kenneth ; Montgomery, Rachel ; Achenbach, Patrick ; Pochodzalla, Josef ; Balabanski, Dimiter L ; Nakamura, Satoshi N ; Sharyy, Viatcheslav ; Yvon, Dominique ; Brodeur, Maxime</creator><creatorcontrib>Aprahamian, Ani ; Margaryan, Amur ; Kakoyan, Vanik ; Zhamkochyan, Simon ; Abrahamyan, Sergey ; Elbakyan, Hayk ; Mayilyan, Samvel ; Piloyan, Arpine ; Vardanyan, Henrik ; Hamlet Zohrabyan ; Gevorgian, Lekdar ; Ayvazyan, Robert ; Papyan, Artashes ; Ayvazyan, Garnik ; Ghalumyan, Arsen ; Margaryan, Narek ; Rostomyan, Hasmik ; Safaryan, Anna ; Grigoryan, Bagrat ; Vardanyan, Ashot ; Yeremyan, Arsham ; Annand, John ; Livingston, Kenneth ; Montgomery, Rachel ; Achenbach, Patrick ; Pochodzalla, Josef ; Balabanski, Dimiter L ; Nakamura, Satoshi N ; Sharyy, Viatcheslav ; Yvon, Dominique ; Brodeur, Maxime</creatorcontrib><description>The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biological properties ; Correlation ; Depletion ; Electrons ; Graphene ; Microchannel plates ; Microchannels ; Microscopy ; Optical microscopy ; Photomultiplier tubes ; Photons ; Position sensing ; Positron emission ; Radio frequency ; Stimulated emission ; Streak cameras ; Time correlation functions ; Tomography</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Aprahamian, Ani</creatorcontrib><creatorcontrib>Margaryan, Amur</creatorcontrib><creatorcontrib>Kakoyan, Vanik</creatorcontrib><creatorcontrib>Zhamkochyan, Simon</creatorcontrib><creatorcontrib>Abrahamyan, Sergey</creatorcontrib><creatorcontrib>Elbakyan, Hayk</creatorcontrib><creatorcontrib>Mayilyan, Samvel</creatorcontrib><creatorcontrib>Piloyan, Arpine</creatorcontrib><creatorcontrib>Vardanyan, Henrik</creatorcontrib><creatorcontrib>Hamlet Zohrabyan</creatorcontrib><creatorcontrib>Gevorgian, Lekdar</creatorcontrib><creatorcontrib>Ayvazyan, Robert</creatorcontrib><creatorcontrib>Papyan, Artashes</creatorcontrib><creatorcontrib>Ayvazyan, Garnik</creatorcontrib><creatorcontrib>Ghalumyan, Arsen</creatorcontrib><creatorcontrib>Margaryan, Narek</creatorcontrib><creatorcontrib>Rostomyan, Hasmik</creatorcontrib><creatorcontrib>Safaryan, Anna</creatorcontrib><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Vardanyan, Ashot</creatorcontrib><creatorcontrib>Yeremyan, Arsham</creatorcontrib><creatorcontrib>Annand, John</creatorcontrib><creatorcontrib>Livingston, Kenneth</creatorcontrib><creatorcontrib>Montgomery, Rachel</creatorcontrib><creatorcontrib>Achenbach, Patrick</creatorcontrib><creatorcontrib>Pochodzalla, Josef</creatorcontrib><creatorcontrib>Balabanski, Dimiter L</creatorcontrib><creatorcontrib>Nakamura, Satoshi N</creatorcontrib><creatorcontrib>Sharyy, Viatcheslav</creatorcontrib><creatorcontrib>Yvon, Dominique</creatorcontrib><creatorcontrib>Brodeur, Maxime</creatorcontrib><title>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</title><title>arXiv.org</title><description>The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.</description><subject>Biological properties</subject><subject>Correlation</subject><subject>Depletion</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Photomultiplier tubes</subject><subject>Photons</subject><subject>Position sensing</subject><subject>Positron emission</subject><subject>Radio frequency</subject><subject>Stimulated emission</subject><subject>Streak cameras</subject><subject>Time correlation functions</subject><subject>Tomography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAYheEgCBbtPXzgokMhJv1zDGJxcSnZS0hSTalJbVrBuzeCFyBneIfzLFBEKD0kZUrICsXedxhjkhcky2iErky9hJVaQS2UcVCN-jlrK9_AzcPYG7BhEDXjs4cdq8P4HriWd2sCA2HVF_RGisk46zdo2Yre6_jXNdpWZ366JMPogvdT07l5tOFqSJGSMj8WGab_qQ_OiDxy</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Aprahamian, Ani</creator><creator>Margaryan, Amur</creator><creator>Kakoyan, Vanik</creator><creator>Zhamkochyan, Simon</creator><creator>Abrahamyan, Sergey</creator><creator>Elbakyan, Hayk</creator><creator>Mayilyan, Samvel</creator><creator>Piloyan, Arpine</creator><creator>Vardanyan, Henrik</creator><creator>Hamlet Zohrabyan</creator><creator>Gevorgian, Lekdar</creator><creator>Ayvazyan, Robert</creator><creator>Papyan, Artashes</creator><creator>Ayvazyan, Garnik</creator><creator>Ghalumyan, Arsen</creator><creator>Margaryan, Narek</creator><creator>Rostomyan, Hasmik</creator><creator>Safaryan, Anna</creator><creator>Grigoryan, Bagrat</creator><creator>Vardanyan, Ashot</creator><creator>Yeremyan, Arsham</creator><creator>Annand, John</creator><creator>Livingston, Kenneth</creator><creator>Montgomery, Rachel</creator><creator>Achenbach, Patrick</creator><creator>Pochodzalla, Josef</creator><creator>Balabanski, Dimiter L</creator><creator>Nakamura, Satoshi N</creator><creator>Sharyy, Viatcheslav</creator><creator>Yvon, Dominique</creator><creator>Brodeur, Maxime</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221129</creationdate><title>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</title><author>Aprahamian, Ani ; Margaryan, Amur ; Kakoyan, Vanik ; Zhamkochyan, Simon ; Abrahamyan, Sergey ; Elbakyan, Hayk ; Mayilyan, Samvel ; Piloyan, Arpine ; Vardanyan, Henrik ; Hamlet Zohrabyan ; Gevorgian, Lekdar ; Ayvazyan, Robert ; Papyan, Artashes ; Ayvazyan, Garnik ; Ghalumyan, Arsen ; Margaryan, Narek ; Rostomyan, Hasmik ; Safaryan, Anna ; Grigoryan, Bagrat ; Vardanyan, Ashot ; Yeremyan, Arsham ; Annand, John ; Livingston, Kenneth ; Montgomery, Rachel ; Achenbach, Patrick ; Pochodzalla, Josef ; Balabanski, Dimiter L ; Nakamura, Satoshi N ; Sharyy, Viatcheslav ; Yvon, Dominique ; Brodeur, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27428697503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological properties</topic><topic>Correlation</topic><topic>Depletion</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Photomultiplier tubes</topic><topic>Photons</topic><topic>Position sensing</topic><topic>Positron emission</topic><topic>Radio frequency</topic><topic>Stimulated emission</topic><topic>Streak cameras</topic><topic>Time correlation functions</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Aprahamian, Ani</creatorcontrib><creatorcontrib>Margaryan, Amur</creatorcontrib><creatorcontrib>Kakoyan, Vanik</creatorcontrib><creatorcontrib>Zhamkochyan, Simon</creatorcontrib><creatorcontrib>Abrahamyan, Sergey</creatorcontrib><creatorcontrib>Elbakyan, Hayk</creatorcontrib><creatorcontrib>Mayilyan, Samvel</creatorcontrib><creatorcontrib>Piloyan, Arpine</creatorcontrib><creatorcontrib>Vardanyan, Henrik</creatorcontrib><creatorcontrib>Hamlet Zohrabyan</creatorcontrib><creatorcontrib>Gevorgian, Lekdar</creatorcontrib><creatorcontrib>Ayvazyan, Robert</creatorcontrib><creatorcontrib>Papyan, Artashes</creatorcontrib><creatorcontrib>Ayvazyan, Garnik</creatorcontrib><creatorcontrib>Ghalumyan, Arsen</creatorcontrib><creatorcontrib>Margaryan, Narek</creatorcontrib><creatorcontrib>Rostomyan, Hasmik</creatorcontrib><creatorcontrib>Safaryan, Anna</creatorcontrib><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Vardanyan, Ashot</creatorcontrib><creatorcontrib>Yeremyan, Arsham</creatorcontrib><creatorcontrib>Annand, John</creatorcontrib><creatorcontrib>Livingston, Kenneth</creatorcontrib><creatorcontrib>Montgomery, Rachel</creatorcontrib><creatorcontrib>Achenbach, Patrick</creatorcontrib><creatorcontrib>Pochodzalla, Josef</creatorcontrib><creatorcontrib>Balabanski, Dimiter L</creatorcontrib><creatorcontrib>Nakamura, Satoshi N</creatorcontrib><creatorcontrib>Sharyy, Viatcheslav</creatorcontrib><creatorcontrib>Yvon, Dominique</creatorcontrib><creatorcontrib>Brodeur, Maxime</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprahamian, Ani</au><au>Margaryan, Amur</au><au>Kakoyan, Vanik</au><au>Zhamkochyan, Simon</au><au>Abrahamyan, Sergey</au><au>Elbakyan, Hayk</au><au>Mayilyan, Samvel</au><au>Piloyan, Arpine</au><au>Vardanyan, Henrik</au><au>Hamlet Zohrabyan</au><au>Gevorgian, Lekdar</au><au>Ayvazyan, Robert</au><au>Papyan, Artashes</au><au>Ayvazyan, Garnik</au><au>Ghalumyan, Arsen</au><au>Margaryan, Narek</au><au>Rostomyan, Hasmik</au><au>Safaryan, Anna</au><au>Grigoryan, Bagrat</au><au>Vardanyan, Ashot</au><au>Yeremyan, Arsham</au><au>Annand, John</au><au>Livingston, Kenneth</au><au>Montgomery, Rachel</au><au>Achenbach, Patrick</au><au>Pochodzalla, Josef</au><au>Balabanski, Dimiter L</au><au>Nakamura, Satoshi N</au><au>Sharyy, Viatcheslav</au><au>Yvon, Dominique</au><au>Brodeur, Maxime</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications</atitle><jtitle>arXiv.org</jtitle><date>2022-11-29</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2742869750 |
source | Freely Accessible Journals |
subjects | Biological properties Correlation Depletion Electrons Graphene Microchannel plates Microchannels Microscopy Optical microscopy Photomultiplier tubes Photons Position sensing Positron emission Radio frequency Stimulated emission Streak cameras Time correlation functions Tomography |
title | Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Advanced%20Radio%20Frequency%20Timing%20AppaRATus%20(ARARAT)%20Technique%20and%20Applications&rft.jtitle=arXiv.org&rft.au=Aprahamian,%20Ani&rft.date=2022-11-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2742869750%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742869750&rft_id=info:pmid/&rfr_iscdi=true |