Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora

The ability to compare the semantic similarity between text corpora is important in a variety of natural language processing applications. However, standard methods for evaluating these metrics have yet to be established. We propose a set of automatic and interpretable measures for assessing the cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Kour, George, Ackerman, Samuel, Raz, Orna, Farchi, Eitan, Carmeli, Boaz, Anaby-Tavor, Ateret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kour, George
Ackerman, Samuel
Raz, Orna
Farchi, Eitan
Carmeli, Boaz
Anaby-Tavor, Ateret
description The ability to compare the semantic similarity between text corpora is important in a variety of natural language processing applications. However, standard methods for evaluating these metrics have yet to be established. We propose a set of automatic and interpretable measures for assessing the characteristics of corpus-level semantic similarity metrics, allowing sensible comparison of their behavior. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by evaluating them on a collection of classical and state-of-the-art metrics. Our measures revealed that recently-developed metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2742866796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742866796</sourcerecordid><originalsourceid>FETCH-proquest_journals_27428667963</originalsourceid><addsrcrecordid>eNqNik0LgkAURYcgSMr_8KC1YDM6WjsRo42r3LWQQUZTdJ7NR_TzMwjatrr33HNXxKOMHYI0onRDfGOGMAwpT2gcM4_cSimM073qwN4l_KhCHM0JMgWZszgJ2zdQPMXoloYKsIWrnIT6zKW0um8MtKihki8LOeoZtdiRdStGI_1vbsn-XFT5JZg1Ppw0th7QabWomiYRTTlPjpz993oDRWlCxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742866796</pqid></control><display><type>article</type><title>Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora</title><source>Freely Accessible Journals</source><creator>Kour, George ; Ackerman, Samuel ; Raz, Orna ; Farchi, Eitan ; Carmeli, Boaz ; Anaby-Tavor, Ateret</creator><creatorcontrib>Kour, George ; Ackerman, Samuel ; Raz, Orna ; Farchi, Eitan ; Carmeli, Boaz ; Anaby-Tavor, Ateret</creatorcontrib><description>The ability to compare the semantic similarity between text corpora is important in a variety of natural language processing applications. However, standard methods for evaluating these metrics have yet to be established. We propose a set of automatic and interpretable measures for assessing the characteristics of corpus-level semantic similarity metrics, allowing sensible comparison of their behavior. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by evaluating them on a collection of classical and state-of-the-art metrics. Our measures revealed that recently-developed metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Evaluation ; Natural language processing ; Perturbation ; Semantics ; Similarity</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Kour, George</creatorcontrib><creatorcontrib>Ackerman, Samuel</creatorcontrib><creatorcontrib>Raz, Orna</creatorcontrib><creatorcontrib>Farchi, Eitan</creatorcontrib><creatorcontrib>Carmeli, Boaz</creatorcontrib><creatorcontrib>Anaby-Tavor, Ateret</creatorcontrib><title>Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora</title><title>arXiv.org</title><description>The ability to compare the semantic similarity between text corpora is important in a variety of natural language processing applications. However, standard methods for evaluating these metrics have yet to be established. We propose a set of automatic and interpretable measures for assessing the characteristics of corpus-level semantic similarity metrics, allowing sensible comparison of their behavior. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by evaluating them on a collection of classical and state-of-the-art metrics. Our measures revealed that recently-developed metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.</description><subject>Evaluation</subject><subject>Natural language processing</subject><subject>Perturbation</subject><subject>Semantics</subject><subject>Similarity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik0LgkAURYcgSMr_8KC1YDM6WjsRo42r3LWQQUZTdJ7NR_TzMwjatrr33HNXxKOMHYI0onRDfGOGMAwpT2gcM4_cSimM073qwN4l_KhCHM0JMgWZszgJ2zdQPMXoloYKsIWrnIT6zKW0um8MtKihki8LOeoZtdiRdStGI_1vbsn-XFT5JZg1Ppw0th7QabWomiYRTTlPjpz993oDRWlCxA</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Kour, George</creator><creator>Ackerman, Samuel</creator><creator>Raz, Orna</creator><creator>Farchi, Eitan</creator><creator>Carmeli, Boaz</creator><creator>Anaby-Tavor, Ateret</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221129</creationdate><title>Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora</title><author>Kour, George ; Ackerman, Samuel ; Raz, Orna ; Farchi, Eitan ; Carmeli, Boaz ; Anaby-Tavor, Ateret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27428667963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Evaluation</topic><topic>Natural language processing</topic><topic>Perturbation</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kour, George</creatorcontrib><creatorcontrib>Ackerman, Samuel</creatorcontrib><creatorcontrib>Raz, Orna</creatorcontrib><creatorcontrib>Farchi, Eitan</creatorcontrib><creatorcontrib>Carmeli, Boaz</creatorcontrib><creatorcontrib>Anaby-Tavor, Ateret</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kour, George</au><au>Ackerman, Samuel</au><au>Raz, Orna</au><au>Farchi, Eitan</au><au>Carmeli, Boaz</au><au>Anaby-Tavor, Ateret</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora</atitle><jtitle>arXiv.org</jtitle><date>2022-11-29</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The ability to compare the semantic similarity between text corpora is important in a variety of natural language processing applications. However, standard methods for evaluating these metrics have yet to be established. We propose a set of automatic and interpretable measures for assessing the characteristics of corpus-level semantic similarity metrics, allowing sensible comparison of their behavior. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by evaluating them on a collection of classical and state-of-the-art metrics. Our measures revealed that recently-developed metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2742866796
source Freely Accessible Journals
subjects Evaluation
Natural language processing
Perturbation
Semantics
Similarity
title Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measuring%20the%20Measuring%20Tools:%20An%20Automatic%20Evaluation%20of%20Semantic%20Metrics%20for%20Text%20Corpora&rft.jtitle=arXiv.org&rft.au=Kour,%20George&rft.date=2022-11-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2742866796%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742866796&rft_id=info:pmid/&rfr_iscdi=true