Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation

Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-12, Vol.69 (12), p.1-5
Hauptverfasser: Zou, Yi, Li, Enlong, Yu, Rengjian, Gao, Changsong, Yu, Xipeng, Zeng, Bangyan, Yang, Qian, Guo, Tailiang, Chen, Huipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 12
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 69
creator Zou, Yi
Li, Enlong
Yu, Rengjian
Gao, Changsong
Yu, Xipeng
Zeng, Bangyan
Yang, Qian
Guo, Tailiang
Chen, Huipeng
description Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.
doi_str_mv 10.1109/TED.2022.3211478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2742704289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9919768</ieee_id><sourcerecordid>2742704289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-ISiXOKX4ntI5TykEp7oDxuluOsIaUkxXaE-u9x1YrTalYzs9oPoXOCR4RgdbWY3I4opnTEKCFcyAM0IEUhclXy8hANMCYyV0yyY3QSwjLJknM6QHayAhs9xPzGBKizV_CxsWaVzf2HaRubPW9as06rbOFNG5oQO5-9NfEze3qHFjKX5Ax6nxIziL-d_9oXjbvvdR9NbLr2FB05swpwtp9D9HI3WYwf8un8_nF8Pc0tVSTmhHFbQy1FJbHlRpqqSg84QQQzxhBDXO3KoqbgqMEgsSwZtlUhDWdMEefYEF3uete---khRL3set-mk5oKTgXmVKrkwjuX9V0IHpxe--bb-I0mWG9R6oRSb1HqPcoUudhFGgD4tytFlCgl-wML1XBu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742704289</pqid></control><display><type>article</type><title>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Yi ; Li, Enlong ; Yu, Rengjian ; Gao, Changsong ; Yu, Xipeng ; Zeng, Bangyan ; Yang, Qian ; Guo, Tailiang ; Chen, Huipeng</creator><creatorcontrib>Zou, Yi ; Li, Enlong ; Yu, Rengjian ; Gao, Changsong ; Yu, Xipeng ; Zeng, Bangyan ; Yang, Qian ; Guo, Tailiang ; Chen, Huipeng</creatorcontrib><description>Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3211478</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Behavioral sciences ; Biocompatibility ; Biological neural networks ; Carrier transport ; Computer networks ; Depression ; Logic gates ; Model accuracy ; MXenes ; Nanoscale channel length ; Neural networks ; Neuromorphic computing ; Neuromorphic engineering ; Object recognition ; organic synaptic transistors ; Pattern recognition ; Perception ; recognition accuracy ; Semiconductor devices ; Synapses ; Transistors ; Tuning</subject><ispartof>IEEE transactions on electron devices, 2022-12, Vol.69 (12), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</citedby><cites>FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</cites><orcidid>0000-0002-7161-3758 ; 0000-0003-1706-3174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9919768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9919768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Li, Enlong</creatorcontrib><creatorcontrib>Yu, Rengjian</creatorcontrib><creatorcontrib>Gao, Changsong</creatorcontrib><creatorcontrib>Yu, Xipeng</creatorcontrib><creatorcontrib>Zeng, Bangyan</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><title>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.</description><subject>Behavioral sciences</subject><subject>Biocompatibility</subject><subject>Biological neural networks</subject><subject>Carrier transport</subject><subject>Computer networks</subject><subject>Depression</subject><subject>Logic gates</subject><subject>Model accuracy</subject><subject>MXenes</subject><subject>Nanoscale channel length</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>Neuromorphic engineering</subject><subject>Object recognition</subject><subject>organic synaptic transistors</subject><subject>Pattern recognition</subject><subject>Perception</subject><subject>recognition accuracy</subject><subject>Semiconductor devices</subject><subject>Synapses</subject><subject>Transistors</subject><subject>Tuning</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-ISiXOKX4ntI5TykEp7oDxuluOsIaUkxXaE-u9x1YrTalYzs9oPoXOCR4RgdbWY3I4opnTEKCFcyAM0IEUhclXy8hANMCYyV0yyY3QSwjLJknM6QHayAhs9xPzGBKizV_CxsWaVzf2HaRubPW9as06rbOFNG5oQO5-9NfEze3qHFjKX5Ax6nxIziL-d_9oXjbvvdR9NbLr2FB05swpwtp9D9HI3WYwf8un8_nF8Pc0tVSTmhHFbQy1FJbHlRpqqSg84QQQzxhBDXO3KoqbgqMEgsSwZtlUhDWdMEefYEF3uete---khRL3set-mk5oKTgXmVKrkwjuX9V0IHpxe--bb-I0mWG9R6oRSb1HqPcoUudhFGgD4tytFlCgl-wML1XBu</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zou, Yi</creator><creator>Li, Enlong</creator><creator>Yu, Rengjian</creator><creator>Gao, Changsong</creator><creator>Yu, Xipeng</creator><creator>Zeng, Bangyan</creator><creator>Yang, Qian</creator><creator>Guo, Tailiang</creator><creator>Chen, Huipeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7161-3758</orcidid><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></search><sort><creationdate>20221201</creationdate><title>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</title><author>Zou, Yi ; Li, Enlong ; Yu, Rengjian ; Gao, Changsong ; Yu, Xipeng ; Zeng, Bangyan ; Yang, Qian ; Guo, Tailiang ; Chen, Huipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral sciences</topic><topic>Biocompatibility</topic><topic>Biological neural networks</topic><topic>Carrier transport</topic><topic>Computer networks</topic><topic>Depression</topic><topic>Logic gates</topic><topic>Model accuracy</topic><topic>MXenes</topic><topic>Nanoscale channel length</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>Neuromorphic engineering</topic><topic>Object recognition</topic><topic>organic synaptic transistors</topic><topic>Pattern recognition</topic><topic>Perception</topic><topic>recognition accuracy</topic><topic>Semiconductor devices</topic><topic>Synapses</topic><topic>Transistors</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Li, Enlong</creatorcontrib><creatorcontrib>Yu, Rengjian</creatorcontrib><creatorcontrib>Gao, Changsong</creatorcontrib><creatorcontrib>Yu, Xipeng</creatorcontrib><creatorcontrib>Zeng, Bangyan</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Yi</au><au>Li, Enlong</au><au>Yu, Rengjian</au><au>Gao, Changsong</au><au>Yu, Xipeng</au><au>Zeng, Bangyan</au><au>Yang, Qian</au><au>Guo, Tailiang</au><au>Chen, Huipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>69</volume><issue>12</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3211478</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7161-3758</orcidid><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-12, Vol.69 (12), p.1-5
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2742704289
source IEEE Electronic Library (IEL)
subjects Behavioral sciences
Biocompatibility
Biological neural networks
Carrier transport
Computer networks
Depression
Logic gates
Model accuracy
MXenes
Nanoscale channel length
Neural networks
Neuromorphic computing
Neuromorphic engineering
Object recognition
organic synaptic transistors
Pattern recognition
Perception
recognition accuracy
Semiconductor devices
Synapses
Transistors
Tuning
title Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electret-Based%20Vertical%20Organic%20Synaptic%20Transistor%20With%20MXene%20for%20Neural%20Network-Based%20Computation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zou,%20Yi&rft.date=2022-12-01&rft.volume=69&rft.issue=12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3211478&rft_dat=%3Cproquest_RIE%3E2742704289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742704289&rft_id=info:pmid/&rft_ieee_id=9919768&rfr_iscdi=true