Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation
Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-12, Vol.69 (12), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Zou, Yi Li, Enlong Yu, Rengjian Gao, Changsong Yu, Xipeng Zeng, Bangyan Yang, Qian Guo, Tailiang Chen, Huipeng |
description | Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks. |
doi_str_mv | 10.1109/TED.2022.3211478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2742704289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9919768</ieee_id><sourcerecordid>2742704289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-ISiXOKX4ntI5TykEp7oDxuluOsIaUkxXaE-u9x1YrTalYzs9oPoXOCR4RgdbWY3I4opnTEKCFcyAM0IEUhclXy8hANMCYyV0yyY3QSwjLJknM6QHayAhs9xPzGBKizV_CxsWaVzf2HaRubPW9as06rbOFNG5oQO5-9NfEze3qHFjKX5Ax6nxIziL-d_9oXjbvvdR9NbLr2FB05swpwtp9D9HI3WYwf8un8_nF8Pc0tVSTmhHFbQy1FJbHlRpqqSg84QQQzxhBDXO3KoqbgqMEgsSwZtlUhDWdMEefYEF3uete---khRL3set-mk5oKTgXmVKrkwjuX9V0IHpxe--bb-I0mWG9R6oRSb1HqPcoUudhFGgD4tytFlCgl-wML1XBu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742704289</pqid></control><display><type>article</type><title>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Yi ; Li, Enlong ; Yu, Rengjian ; Gao, Changsong ; Yu, Xipeng ; Zeng, Bangyan ; Yang, Qian ; Guo, Tailiang ; Chen, Huipeng</creator><creatorcontrib>Zou, Yi ; Li, Enlong ; Yu, Rengjian ; Gao, Changsong ; Yu, Xipeng ; Zeng, Bangyan ; Yang, Qian ; Guo, Tailiang ; Chen, Huipeng</creatorcontrib><description>Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3211478</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Behavioral sciences ; Biocompatibility ; Biological neural networks ; Carrier transport ; Computer networks ; Depression ; Logic gates ; Model accuracy ; MXenes ; Nanoscale channel length ; Neural networks ; Neuromorphic computing ; Neuromorphic engineering ; Object recognition ; organic synaptic transistors ; Pattern recognition ; Perception ; recognition accuracy ; Semiconductor devices ; Synapses ; Transistors ; Tuning</subject><ispartof>IEEE transactions on electron devices, 2022-12, Vol.69 (12), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</citedby><cites>FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</cites><orcidid>0000-0002-7161-3758 ; 0000-0003-1706-3174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9919768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9919768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Li, Enlong</creatorcontrib><creatorcontrib>Yu, Rengjian</creatorcontrib><creatorcontrib>Gao, Changsong</creatorcontrib><creatorcontrib>Yu, Xipeng</creatorcontrib><creatorcontrib>Zeng, Bangyan</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><title>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.</description><subject>Behavioral sciences</subject><subject>Biocompatibility</subject><subject>Biological neural networks</subject><subject>Carrier transport</subject><subject>Computer networks</subject><subject>Depression</subject><subject>Logic gates</subject><subject>Model accuracy</subject><subject>MXenes</subject><subject>Nanoscale channel length</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>Neuromorphic engineering</subject><subject>Object recognition</subject><subject>organic synaptic transistors</subject><subject>Pattern recognition</subject><subject>Perception</subject><subject>recognition accuracy</subject><subject>Semiconductor devices</subject><subject>Synapses</subject><subject>Transistors</subject><subject>Tuning</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-ISiXOKX4ntI5TykEp7oDxuluOsIaUkxXaE-u9x1YrTalYzs9oPoXOCR4RgdbWY3I4opnTEKCFcyAM0IEUhclXy8hANMCYyV0yyY3QSwjLJknM6QHayAhs9xPzGBKizV_CxsWaVzf2HaRubPW9as06rbOFNG5oQO5-9NfEze3qHFjKX5Ax6nxIziL-d_9oXjbvvdR9NbLr2FB05swpwtp9D9HI3WYwf8un8_nF8Pc0tVSTmhHFbQy1FJbHlRpqqSg84QQQzxhBDXO3KoqbgqMEgsSwZtlUhDWdMEefYEF3uete---khRL3set-mk5oKTgXmVKrkwjuX9V0IHpxe--bb-I0mWG9R6oRSb1HqPcoUudhFGgD4tytFlCgl-wML1XBu</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zou, Yi</creator><creator>Li, Enlong</creator><creator>Yu, Rengjian</creator><creator>Gao, Changsong</creator><creator>Yu, Xipeng</creator><creator>Zeng, Bangyan</creator><creator>Yang, Qian</creator><creator>Guo, Tailiang</creator><creator>Chen, Huipeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7161-3758</orcidid><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></search><sort><creationdate>20221201</creationdate><title>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</title><author>Zou, Yi ; Li, Enlong ; Yu, Rengjian ; Gao, Changsong ; Yu, Xipeng ; Zeng, Bangyan ; Yang, Qian ; Guo, Tailiang ; Chen, Huipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-134cded87b80c4a8abb557f7173aaa1a1fdf65d2ef2a0e808630cb58a43391ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral sciences</topic><topic>Biocompatibility</topic><topic>Biological neural networks</topic><topic>Carrier transport</topic><topic>Computer networks</topic><topic>Depression</topic><topic>Logic gates</topic><topic>Model accuracy</topic><topic>MXenes</topic><topic>Nanoscale channel length</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>Neuromorphic engineering</topic><topic>Object recognition</topic><topic>organic synaptic transistors</topic><topic>Pattern recognition</topic><topic>Perception</topic><topic>recognition accuracy</topic><topic>Semiconductor devices</topic><topic>Synapses</topic><topic>Transistors</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Li, Enlong</creatorcontrib><creatorcontrib>Yu, Rengjian</creatorcontrib><creatorcontrib>Gao, Changsong</creatorcontrib><creatorcontrib>Yu, Xipeng</creatorcontrib><creatorcontrib>Zeng, Bangyan</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Guo, Tailiang</creatorcontrib><creatorcontrib>Chen, Huipeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Yi</au><au>Li, Enlong</au><au>Yu, Rengjian</au><au>Gao, Changsong</au><au>Yu, Xipeng</au><au>Zeng, Bangyan</au><au>Yang, Qian</au><au>Guo, Tailiang</au><au>Chen, Huipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>69</volume><issue>12</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Organic synaptic transistors with excellent solution processability and biocompatibility have emerged as artificial electronic synapses. Regular organic synaptic transistors suffer from slight conductance variation and asymmetric conductance tuning, limiting the development of the model perception accuracy of the organic neuromorphic systems. Here, we first develop an electret-based vertical organic synaptic transistor (EVOST) with Mxene as the source electrode. The EVOST achieves linear conductance tuning by leveraging the nanoscale carrier transport channel length and high conductivity of MXene. Moreover, we develop an artificial neural recognition system composed of EVOSTs for recognizing the random images from the database, which achieves outstanding perception accuracy of 94.9%. The EVOST provides an alternative way for neuromorphic computing networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3211478</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7161-3758</orcidid><orcidid>https://orcid.org/0000-0003-1706-3174</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-12, Vol.69 (12), p.1-5 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2742704289 |
source | IEEE Electronic Library (IEL) |
subjects | Behavioral sciences Biocompatibility Biological neural networks Carrier transport Computer networks Depression Logic gates Model accuracy MXenes Nanoscale channel length Neural networks Neuromorphic computing Neuromorphic engineering Object recognition organic synaptic transistors Pattern recognition Perception recognition accuracy Semiconductor devices Synapses Transistors Tuning |
title | Electret-Based Vertical Organic Synaptic Transistor With MXene for Neural Network-Based Computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electret-Based%20Vertical%20Organic%20Synaptic%20Transistor%20With%20MXene%20for%20Neural%20Network-Based%20Computation&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zou,%20Yi&rft.date=2022-12-01&rft.volume=69&rft.issue=12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3211478&rft_dat=%3Cproquest_RIE%3E2742704289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742704289&rft_id=info:pmid/&rft_ieee_id=9919768&rfr_iscdi=true |