A Multimodal Approach for Mania Level Prediction in Bipolar Disorder

Bipolar disorder is a mental health disorder that causes mood swings that range from depression to mania. Clinical diagnosis of bipolar disorder is based on patient interviews and reports obtained from the relatives of the patients. Subsequently, the diagnosis depends on the experience of the expert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2022-10, Vol.13 (4), p.2119-2131
Hauptverfasser: Baki, Pnar, Kaya, Heysem, Ciftci, Elvan, Gulec, Huseyin, Salah, Albert Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2131
container_issue 4
container_start_page 2119
container_title IEEE transactions on affective computing
container_volume 13
creator Baki, Pnar
Kaya, Heysem
Ciftci, Elvan
Gulec, Huseyin
Salah, Albert Ali
description Bipolar disorder is a mental health disorder that causes mood swings that range from depression to mania. Clinical diagnosis of bipolar disorder is based on patient interviews and reports obtained from the relatives of the patients. Subsequently, the diagnosis depends on the experience of the expert, and there is co-morbidity with other mental disorders. Automated processing in the diagnosis of bipolar disorder can help providing quantitative indicators, and allow easier observations of the patients for longer periods. In this paper, we create a multimodal decision system for three level mania classification based on recordings of the patients in acoustic, linguistic, and visual modalities. The system is evaluated on the Turkish Bipolar Disorder corpus we have recently introduced to the scientific community. Comprehensive analysis of unimodal and multimodal systems, as well as fusion techniques, are performed. Using acoustic, linguistic, and visual features in a multimodal fusion system, we achieved a 64.8% unweighted average recall score, which advances the state-of-the-art performance on this dataset.
doi_str_mv 10.1109/TAFFC.2022.3193054
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2742704058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9835028</ieee_id><sourcerecordid>2742704058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-30edfb94367970aaf2e641c4360dbf1e8afe5127d0703c61bae150167c583eb03</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEtPYH4BLJM4bTtI2zbFsDJA2wWGcozR1RKauKWmHxL9fxyaEL7al9-ynj5BbBjPGQD1siuVyPuPA-UwwJSBNLsiIqURNBSTp5b_5mky6bgtDCSEyLkdkUdD1vu79LlSmpkXbxmDsJ3Uh0rVpvKEr_MaavkesvO19aKhv6KNvQ20iXfguxArjDblypu5wcu5j8rF82sxfpqu359d5sZpartJ-SICVK1UiMqkkGOM4Zgmzww5V6RjmxmHKuKxAgrAZKw2yFFgmbZoLLEGMyf3p7pDya49dr7dhH5vhpeYy4RISGJRjwk8qG0PXRXS6jX5n4o9moI_A9C8wfQSmz8AG093J5BHxz6BykQLPxQEMxmUh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742704058</pqid></control><display><type>article</type><title>A Multimodal Approach for Mania Level Prediction in Bipolar Disorder</title><source>IEEE Electronic Library (IEL)</source><creator>Baki, Pnar ; Kaya, Heysem ; Ciftci, Elvan ; Gulec, Huseyin ; Salah, Albert Ali</creator><creatorcontrib>Baki, Pnar ; Kaya, Heysem ; Ciftci, Elvan ; Gulec, Huseyin ; Salah, Albert Ali</creatorcontrib><description>Bipolar disorder is a mental health disorder that causes mood swings that range from depression to mania. Clinical diagnosis of bipolar disorder is based on patient interviews and reports obtained from the relatives of the patients. Subsequently, the diagnosis depends on the experience of the expert, and there is co-morbidity with other mental disorders. Automated processing in the diagnosis of bipolar disorder can help providing quantitative indicators, and allow easier observations of the patients for longer periods. In this paper, we create a multimodal decision system for three level mania classification based on recordings of the patients in acoustic, linguistic, and visual modalities. The system is evaluated on the Turkish Bipolar Disorder corpus we have recently introduced to the scientific community. Comprehensive analysis of unimodal and multimodal systems, as well as fusion techniques, are performed. Using acoustic, linguistic, and visual features in a multimodal fusion system, we achieved a 64.8% unweighted average recall score, which advances the state-of-the-art performance on this dataset.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2022.3193054</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Affective disorders ; Behavioral sciences ; Bipolar disorder ; Depression ; Diagnosis ; Feature extraction ; Interviews ; Linguistics ; mania level prediction ; Mental disorders ; Mental health ; multimodal fusion ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on affective computing, 2022-10, Vol.13 (4), p.2119-2131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-30edfb94367970aaf2e641c4360dbf1e8afe5127d0703c61bae150167c583eb03</citedby><cites>FETCH-LOGICAL-c295t-30edfb94367970aaf2e641c4360dbf1e8afe5127d0703c61bae150167c583eb03</cites><orcidid>0000-0001-6342-428X ; 0000-0001-7947-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9835028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9835028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baki, Pnar</creatorcontrib><creatorcontrib>Kaya, Heysem</creatorcontrib><creatorcontrib>Ciftci, Elvan</creatorcontrib><creatorcontrib>Gulec, Huseyin</creatorcontrib><creatorcontrib>Salah, Albert Ali</creatorcontrib><title>A Multimodal Approach for Mania Level Prediction in Bipolar Disorder</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Bipolar disorder is a mental health disorder that causes mood swings that range from depression to mania. Clinical diagnosis of bipolar disorder is based on patient interviews and reports obtained from the relatives of the patients. Subsequently, the diagnosis depends on the experience of the expert, and there is co-morbidity with other mental disorders. Automated processing in the diagnosis of bipolar disorder can help providing quantitative indicators, and allow easier observations of the patients for longer periods. In this paper, we create a multimodal decision system for three level mania classification based on recordings of the patients in acoustic, linguistic, and visual modalities. The system is evaluated on the Turkish Bipolar Disorder corpus we have recently introduced to the scientific community. Comprehensive analysis of unimodal and multimodal systems, as well as fusion techniques, are performed. Using acoustic, linguistic, and visual features in a multimodal fusion system, we achieved a 64.8% unweighted average recall score, which advances the state-of-the-art performance on this dataset.</description><subject>Acoustics</subject><subject>Affective disorders</subject><subject>Behavioral sciences</subject><subject>Bipolar disorder</subject><subject>Depression</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Interviews</subject><subject>Linguistics</subject><subject>mania level prediction</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>multimodal fusion</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEtPYH4BLJM4bTtI2zbFsDJA2wWGcozR1RKauKWmHxL9fxyaEL7al9-ynj5BbBjPGQD1siuVyPuPA-UwwJSBNLsiIqURNBSTp5b_5mky6bgtDCSEyLkdkUdD1vu79LlSmpkXbxmDsJ3Uh0rVpvKEr_MaavkesvO19aKhv6KNvQ20iXfguxArjDblypu5wcu5j8rF82sxfpqu359d5sZpartJ-SICVK1UiMqkkGOM4Zgmzww5V6RjmxmHKuKxAgrAZKw2yFFgmbZoLLEGMyf3p7pDya49dr7dhH5vhpeYy4RISGJRjwk8qG0PXRXS6jX5n4o9moI_A9C8wfQSmz8AG093J5BHxz6BykQLPxQEMxmUh</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Baki, Pnar</creator><creator>Kaya, Heysem</creator><creator>Ciftci, Elvan</creator><creator>Gulec, Huseyin</creator><creator>Salah, Albert Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6342-428X</orcidid><orcidid>https://orcid.org/0000-0001-7947-5508</orcidid></search><sort><creationdate>20221001</creationdate><title>A Multimodal Approach for Mania Level Prediction in Bipolar Disorder</title><author>Baki, Pnar ; Kaya, Heysem ; Ciftci, Elvan ; Gulec, Huseyin ; Salah, Albert Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-30edfb94367970aaf2e641c4360dbf1e8afe5127d0703c61bae150167c583eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Affective disorders</topic><topic>Behavioral sciences</topic><topic>Bipolar disorder</topic><topic>Depression</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Interviews</topic><topic>Linguistics</topic><topic>mania level prediction</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>multimodal fusion</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baki, Pnar</creatorcontrib><creatorcontrib>Kaya, Heysem</creatorcontrib><creatorcontrib>Ciftci, Elvan</creatorcontrib><creatorcontrib>Gulec, Huseyin</creatorcontrib><creatorcontrib>Salah, Albert Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baki, Pnar</au><au>Kaya, Heysem</au><au>Ciftci, Elvan</au><au>Gulec, Huseyin</au><au>Salah, Albert Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Approach for Mania Level Prediction in Bipolar Disorder</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>13</volume><issue>4</issue><spage>2119</spage><epage>2131</epage><pages>2119-2131</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Bipolar disorder is a mental health disorder that causes mood swings that range from depression to mania. Clinical diagnosis of bipolar disorder is based on patient interviews and reports obtained from the relatives of the patients. Subsequently, the diagnosis depends on the experience of the expert, and there is co-morbidity with other mental disorders. Automated processing in the diagnosis of bipolar disorder can help providing quantitative indicators, and allow easier observations of the patients for longer periods. In this paper, we create a multimodal decision system for three level mania classification based on recordings of the patients in acoustic, linguistic, and visual modalities. The system is evaluated on the Turkish Bipolar Disorder corpus we have recently introduced to the scientific community. Comprehensive analysis of unimodal and multimodal systems, as well as fusion techniques, are performed. Using acoustic, linguistic, and visual features in a multimodal fusion system, we achieved a 64.8% unweighted average recall score, which advances the state-of-the-art performance on this dataset.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2022.3193054</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6342-428X</orcidid><orcidid>https://orcid.org/0000-0001-7947-5508</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2022-10, Vol.13 (4), p.2119-2131
issn 1949-3045
1949-3045
language eng
recordid cdi_proquest_journals_2742704058
source IEEE Electronic Library (IEL)
subjects Acoustics
Affective disorders
Behavioral sciences
Bipolar disorder
Depression
Diagnosis
Feature extraction
Interviews
Linguistics
mania level prediction
Mental disorders
Mental health
multimodal fusion
Task analysis
Visualization
title A Multimodal Approach for Mania Level Prediction in Bipolar Disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Approach%20for%20Mania%20Level%20Prediction%20in%20Bipolar%20Disorder&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Baki,%20Pnar&rft.date=2022-10-01&rft.volume=13&rft.issue=4&rft.spage=2119&rft.epage=2131&rft.pages=2119-2131&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2022.3193054&rft_dat=%3Cproquest_RIE%3E2742704058%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742704058&rft_id=info:pmid/&rft_ieee_id=9835028&rfr_iscdi=true