Lipschitz Property of Harmonic Mappings with Respect to Pseudo-Hyperbolic Metric

In this paper, we show that harmonic Bloch mappings are Lipschitz continuous with respect to the pseudo-hyperbolic metric. This result improves the corresponding result of [11, Theorem 1]. Furthermore, we prove the similar property for harmonic quasiregular Bloch-type mappings.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2022-12, Vol.48 (4), p.1069-1080
Hauptverfasser: Huang, J., Rasila, A., Zhu, J.-F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1080
container_issue 4
container_start_page 1069
container_title Analysis mathematica (Budapest)
container_volume 48
creator Huang, J.
Rasila, A.
Zhu, J.-F.
description In this paper, we show that harmonic Bloch mappings are Lipschitz continuous with respect to the pseudo-hyperbolic metric. This result improves the corresponding result of [11, Theorem 1]. Furthermore, we prove the similar property for harmonic quasiregular Bloch-type mappings.
doi_str_mv 10.1007/s10476-022-0132-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742634431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742634431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f72f83f2f0094318fb6f3d3bba929484dcf7d23e711a7e397b730fb37a0a4f523</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOZpk0k32KEWtULGIgreQ3U3aLe1mTVKkfXpTVvDkaWD4vn-GH6FrRm8ZpfIuMipkQSjnhDLg5HCCRmyiFOESPk_RKC-BgJrwc3QR45pSWhYKRmgxb_tYr9p0wIvgexvSHnuHZyZsfdfW-MX0fdstI_5u0wq_2djbOuHk8SLaXePJbJ-dym-OqE2hrS_RmTObaK9-5xh9PD68T2dk_vr0PL2fk5qLIhEnuVPguMuPCGDKVYWDBqrKlLwUSjS1kw0HKxkz0kIpKwnUVSANNcJNOIzRzZDbB_-1szHptd-FLp_UXApegMixmWIDVQcfY7BO96HdmrDXjOpjcXooTufi9LE4fcgOH5yY2W5pw1_y_9IPmQZxOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742634431</pqid></control><display><type>article</type><title>Lipschitz Property of Harmonic Mappings with Respect to Pseudo-Hyperbolic Metric</title><source>SpringerNature Journals</source><creator>Huang, J. ; Rasila, A. ; Zhu, J.-F.</creator><creatorcontrib>Huang, J. ; Rasila, A. ; Zhu, J.-F.</creatorcontrib><description>In this paper, we show that harmonic Bloch mappings are Lipschitz continuous with respect to the pseudo-hyperbolic metric. This result improves the corresponding result of [11, Theorem 1]. Furthermore, we prove the similar property for harmonic quasiregular Bloch-type mappings.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-022-0132-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Analysis mathematica (Budapest), 2022-12, Vol.48 (4), p.1069-1080</ispartof><rights>Akadémiai Kiadó, Budapest 2022</rights><rights>Akadémiai Kiadó, Budapest 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-f72f83f2f0094318fb6f3d3bba929484dcf7d23e711a7e397b730fb37a0a4f523</citedby><cites>FETCH-LOGICAL-c246t-f72f83f2f0094318fb6f3d3bba929484dcf7d23e711a7e397b730fb37a0a4f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10476-022-0132-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10476-022-0132-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Rasila, A.</creatorcontrib><creatorcontrib>Zhu, J.-F.</creatorcontrib><title>Lipschitz Property of Harmonic Mappings with Respect to Pseudo-Hyperbolic Metric</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>In this paper, we show that harmonic Bloch mappings are Lipschitz continuous with respect to the pseudo-hyperbolic metric. This result improves the corresponding result of [11, Theorem 1]. Furthermore, we prove the similar property for harmonic quasiregular Bloch-type mappings.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOZpk0k32KEWtULGIgreQ3U3aLe1mTVKkfXpTVvDkaWD4vn-GH6FrRm8ZpfIuMipkQSjnhDLg5HCCRmyiFOESPk_RKC-BgJrwc3QR45pSWhYKRmgxb_tYr9p0wIvgexvSHnuHZyZsfdfW-MX0fdstI_5u0wq_2djbOuHk8SLaXePJbJ-dym-OqE2hrS_RmTObaK9-5xh9PD68T2dk_vr0PL2fk5qLIhEnuVPguMuPCGDKVYWDBqrKlLwUSjS1kw0HKxkz0kIpKwnUVSANNcJNOIzRzZDbB_-1szHptd-FLp_UXApegMixmWIDVQcfY7BO96HdmrDXjOpjcXooTufi9LE4fcgOH5yY2W5pw1_y_9IPmQZxOw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Huang, J.</creator><creator>Rasila, A.</creator><creator>Zhu, J.-F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Lipschitz Property of Harmonic Mappings with Respect to Pseudo-Hyperbolic Metric</title><author>Huang, J. ; Rasila, A. ; Zhu, J.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f72f83f2f0094318fb6f3d3bba929484dcf7d23e711a7e397b730fb37a0a4f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Rasila, A.</creatorcontrib><creatorcontrib>Zhu, J.-F.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, J.</au><au>Rasila, A.</au><au>Zhu, J.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz Property of Harmonic Mappings with Respect to Pseudo-Hyperbolic Metric</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>48</volume><issue>4</issue><spage>1069</spage><epage>1080</epage><pages>1069-1080</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>In this paper, we show that harmonic Bloch mappings are Lipschitz continuous with respect to the pseudo-hyperbolic metric. This result improves the corresponding result of [11, Theorem 1]. Furthermore, we prove the similar property for harmonic quasiregular Bloch-type mappings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-022-0132-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2022-12, Vol.48 (4), p.1069-1080
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_journals_2742634431
source SpringerNature Journals
subjects Analysis
Mathematics
Mathematics and Statistics
title Lipschitz Property of Harmonic Mappings with Respect to Pseudo-Hyperbolic Metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz%20Property%20of%20Harmonic%20Mappings%20with%20Respect%20to%20Pseudo-Hyperbolic%20Metric&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Huang,%20J.&rft.date=2022-12-01&rft.volume=48&rft.issue=4&rft.spage=1069&rft.epage=1080&rft.pages=1069-1080&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-022-0132-z&rft_dat=%3Cproquest_cross%3E2742634431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742634431&rft_id=info:pmid/&rfr_iscdi=true