Learning with risks based on M-location

In this work, we study a new class of risks defined in terms of the location and deviation of the loss distribution, generalizing far beyond classical mean-variance risk functions. The class is easily implemented as a wrapper around any smooth loss, it admits finite-sample stationarity guarantees fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2022-12, Vol.111 (12), p.4679-4718
1. Verfasser: Holland, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4718
container_issue 12
container_start_page 4679
container_title Machine learning
container_volume 111
creator Holland, Matthew J.
description In this work, we study a new class of risks defined in terms of the location and deviation of the loss distribution, generalizing far beyond classical mean-variance risk functions. The class is easily implemented as a wrapper around any smooth loss, it admits finite-sample stationarity guarantees for stochastic gradient methods, it is straightforward to interpret and adjust, with close links to M-estimators of the loss location, and has a salient effect on the test loss distribution, giving us control over symmetry and deviations that are not possible under naive ERM.
doi_str_mv 10.1007/s10994-022-06217-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2741134080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741134080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-69b1a37b36baf3f5a0641034f0724d112bad59cf04d4f4e7a12a6c8900c9306e3</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoWEf_gKuCC1fRe_NslzL4goobXYc0TcaOYzMmHcR_b7WCO1d3c8534RByinCBAPoyI9S1oMAYBcVQU7lHCpSaU5BK7pMCqkpShUwekqOc1wDAVKUKct54m4Z-WJUf_fhSpj6_5rK12XdlHMoHuonOjn0cjslBsJvsT37vgjzfXD8t72jzeHu_vGqo4yhGquoWLdctV60NPEgLSiBwEUAz0SGy1naydgFEJ4Lw2iKzylU1gKs5KM8X5Gze3ab4vvN5NOu4S8P00jAtELmACiaKzZRLMefkg9mm_s2mT4NgvoOYOYiZgpifIEZOEp-lPMHDyqe_6X-sL_XHYN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741134080</pqid></control><display><type>article</type><title>Learning with risks based on M-location</title><source>SpringerLink Journals - AutoHoldings</source><creator>Holland, Matthew J.</creator><creatorcontrib>Holland, Matthew J.</creatorcontrib><description>In this work, we study a new class of risks defined in terms of the location and deviation of the loss distribution, generalizing far beyond classical mean-variance risk functions. The class is easily implemented as a wrapper around any smooth loss, it admits finite-sample stationarity guarantees for stochastic gradient methods, it is straightforward to interpret and adjust, with close links to M-estimators of the loss location, and has a salient effect on the test loss distribution, giving us control over symmetry and deviations that are not possible under naive ERM.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-022-06217-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Control ; Design ; Deviation ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Robotics ; Simulation and Modeling ; Special Issue of the ECML PKDD 2022 Journal Track</subject><ispartof>Machine learning, 2022-12, Vol.111 (12), p.4679-4718</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-69b1a37b36baf3f5a0641034f0724d112bad59cf04d4f4e7a12a6c8900c9306e3</cites><orcidid>0000-0002-6704-1769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-022-06217-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-022-06217-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Holland, Matthew J.</creatorcontrib><title>Learning with risks based on M-location</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>In this work, we study a new class of risks defined in terms of the location and deviation of the loss distribution, generalizing far beyond classical mean-variance risk functions. The class is easily implemented as a wrapper around any smooth loss, it admits finite-sample stationarity guarantees for stochastic gradient methods, it is straightforward to interpret and adjust, with close links to M-estimators of the loss location, and has a salient effect on the test loss distribution, giving us control over symmetry and deviations that are not possible under naive ERM.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Design</subject><subject>Deviation</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Special Issue of the ECML PKDD 2022 Journal Track</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAURoMoWEf_gKuCC1fRe_NslzL4goobXYc0TcaOYzMmHcR_b7WCO1d3c8534RByinCBAPoyI9S1oMAYBcVQU7lHCpSaU5BK7pMCqkpShUwekqOc1wDAVKUKct54m4Z-WJUf_fhSpj6_5rK12XdlHMoHuonOjn0cjslBsJvsT37vgjzfXD8t72jzeHu_vGqo4yhGquoWLdctV60NPEgLSiBwEUAz0SGy1naydgFEJ4Lw2iKzylU1gKs5KM8X5Gze3ab4vvN5NOu4S8P00jAtELmACiaKzZRLMefkg9mm_s2mT4NgvoOYOYiZgpifIEZOEp-lPMHDyqe_6X-sL_XHYN0</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Holland, Matthew J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6704-1769</orcidid></search><sort><creationdate>20221201</creationdate><title>Learning with risks based on M-location</title><author>Holland, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-69b1a37b36baf3f5a0641034f0724d112bad59cf04d4f4e7a12a6c8900c9306e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Design</topic><topic>Deviation</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Special Issue of the ECML PKDD 2022 Journal Track</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland, Matthew J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning with risks based on M-location</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>111</volume><issue>12</issue><spage>4679</spage><epage>4718</epage><pages>4679-4718</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>In this work, we study a new class of risks defined in terms of the location and deviation of the loss distribution, generalizing far beyond classical mean-variance risk functions. The class is easily implemented as a wrapper around any smooth loss, it admits finite-sample stationarity guarantees for stochastic gradient methods, it is straightforward to interpret and adjust, with close links to M-estimators of the loss location, and has a salient effect on the test loss distribution, giving us control over symmetry and deviations that are not possible under naive ERM.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-022-06217-5</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-6704-1769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2022-12, Vol.111 (12), p.4679-4718
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_2741134080
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Computer Science
Control
Design
Deviation
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Special Issue of the ECML PKDD 2022 Journal Track
title Learning with risks based on M-location
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20with%20risks%20based%20on%20M-location&rft.jtitle=Machine%20learning&rft.au=Holland,%20Matthew%20J.&rft.date=2022-12-01&rft.volume=111&rft.issue=12&rft.spage=4679&rft.epage=4718&rft.pages=4679-4718&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-022-06217-5&rft_dat=%3Cproquest_cross%3E2741134080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741134080&rft_id=info:pmid/&rfr_iscdi=true