Modelling and analysis of self balanced wheel

This paper contains the detailed description of modelling and analysis of the gyroscopic wheel that is used for stabilization of a two-wheeler. A gyroscopic wheel is a self-stabilising wheel in which a rotating flywheel is assembled inside a stationary wheel in order to keep the stationary wheel upr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kotari, Sairam, Adepu, Nayan, Sharvirala, Pavan Sai, Ambati, Shravani, Gubbala, Tarun Goud, Venukumar, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2648
creator Kotari, Sairam
Adepu, Nayan
Sharvirala, Pavan Sai
Ambati, Shravani
Gubbala, Tarun Goud
Venukumar, S.
description This paper contains the detailed description of modelling and analysis of the gyroscopic wheel that is used for stabilization of a two-wheeler. A gyroscopic wheel is a self-stabilising wheel in which a rotating flywheel is assembled inside a stationary wheel in order to keep the stationary wheel upright and prevent from falling down. The gyroscopic wheel works on the principle of conservation of angular momentum of the rotating flywheel and the stationary wheel. The flywheel is a solid disk which spins independently with respect to the wheel axis. When the flywheel rotates at a higher speed it creates a gyroscopic effect known as gyroscopic precession. The gyroscopic wheel detects the direction of fall and thus re-stabilises the wheel. Thus, the flywheel will help to maintain the wheel in upright position and balance itself by nullifying all the forces that cause the wheel to fall down. Autodesk Fusion 360 software is used for designing and modelling of the gyroscopic wheel. ANSYS software is used for structural analysis that includes to determine the equivalent stress and Total deformation of the rotating flywheel. Also, the mathematical calculations required to find the minimum angular velocity of the flywheel by the principle of conservation of angular momentum are also determined.
doi_str_mv 10.1063/5.0118168
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2741110066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741110066</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-2ffccc12b1a2a8fc110b7add5dba6a965d5589fb2fe33965f6a97764947e64693</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAOyE1N8_JUoovqLhRcBcyeeiUODNOpkr_vZEW3Lm4XO7l45zDQegcyAKIZFdiQQBqkPUBmoEQgJUEeYhmhGiOKWevx-gk5zUhVCtVzxB-7H1Iqe3eKtv5MjZtc5urPlY5pFg1NtnOBV99v4eQTtFRtCmHs_2eo5fbm-flPV493T0sr1d4KM4TpjE654A2YKmtowMgjbLeC99YabUUXohax4bGwFg5Y3kqJbnmKkguNZuji53uMPafm5Ans-43Y8mWDVUcih6RslCXOyq7drJT23dmGNsPO24NEPNbhxFmX8d_8Fc__oFm8JH9AKymXxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2741110066</pqid></control><display><type>conference_proceeding</type><title>Modelling and analysis of self balanced wheel</title><source>AIP Journals Complete</source><creator>Kotari, Sairam ; Adepu, Nayan ; Sharvirala, Pavan Sai ; Ambati, Shravani ; Gubbala, Tarun Goud ; Venukumar, S.</creator><contributor>Deepak, K. ; Venukumar, S. ; Venkatesh, Begori ; Rao P, Srinivasa ; Shrivastava, Mukul ; Reddy, P. Venkateshwar</contributor><creatorcontrib>Kotari, Sairam ; Adepu, Nayan ; Sharvirala, Pavan Sai ; Ambati, Shravani ; Gubbala, Tarun Goud ; Venukumar, S. ; Deepak, K. ; Venukumar, S. ; Venkatesh, Begori ; Rao P, Srinivasa ; Shrivastava, Mukul ; Reddy, P. Venkateshwar</creatorcontrib><description>This paper contains the detailed description of modelling and analysis of the gyroscopic wheel that is used for stabilization of a two-wheeler. A gyroscopic wheel is a self-stabilising wheel in which a rotating flywheel is assembled inside a stationary wheel in order to keep the stationary wheel upright and prevent from falling down. The gyroscopic wheel works on the principle of conservation of angular momentum of the rotating flywheel and the stationary wheel. The flywheel is a solid disk which spins independently with respect to the wheel axis. When the flywheel rotates at a higher speed it creates a gyroscopic effect known as gyroscopic precession. The gyroscopic wheel detects the direction of fall and thus re-stabilises the wheel. Thus, the flywheel will help to maintain the wheel in upright position and balance itself by nullifying all the forces that cause the wheel to fall down. Autodesk Fusion 360 software is used for designing and modelling of the gyroscopic wheel. ANSYS software is used for structural analysis that includes to determine the equivalent stress and Total deformation of the rotating flywheel. Also, the mathematical calculations required to find the minimum angular velocity of the flywheel by the principle of conservation of angular momentum are also determined.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0118168</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Angular momentum ; Angular velocity ; CAD ; Computer aided design ; Flywheels ; Modelling ; Principles ; Rotation ; Software ; Structural analysis</subject><ispartof>AIP conference proceedings, 2022, Vol.2648 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0118168$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Deepak, K.</contributor><contributor>Venukumar, S.</contributor><contributor>Venkatesh, Begori</contributor><contributor>Rao P, Srinivasa</contributor><contributor>Shrivastava, Mukul</contributor><contributor>Reddy, P. Venkateshwar</contributor><creatorcontrib>Kotari, Sairam</creatorcontrib><creatorcontrib>Adepu, Nayan</creatorcontrib><creatorcontrib>Sharvirala, Pavan Sai</creatorcontrib><creatorcontrib>Ambati, Shravani</creatorcontrib><creatorcontrib>Gubbala, Tarun Goud</creatorcontrib><creatorcontrib>Venukumar, S.</creatorcontrib><title>Modelling and analysis of self balanced wheel</title><title>AIP conference proceedings</title><description>This paper contains the detailed description of modelling and analysis of the gyroscopic wheel that is used for stabilization of a two-wheeler. A gyroscopic wheel is a self-stabilising wheel in which a rotating flywheel is assembled inside a stationary wheel in order to keep the stationary wheel upright and prevent from falling down. The gyroscopic wheel works on the principle of conservation of angular momentum of the rotating flywheel and the stationary wheel. The flywheel is a solid disk which spins independently with respect to the wheel axis. When the flywheel rotates at a higher speed it creates a gyroscopic effect known as gyroscopic precession. The gyroscopic wheel detects the direction of fall and thus re-stabilises the wheel. Thus, the flywheel will help to maintain the wheel in upright position and balance itself by nullifying all the forces that cause the wheel to fall down. Autodesk Fusion 360 software is used for designing and modelling of the gyroscopic wheel. ANSYS software is used for structural analysis that includes to determine the equivalent stress and Total deformation of the rotating flywheel. Also, the mathematical calculations required to find the minimum angular velocity of the flywheel by the principle of conservation of angular momentum are also determined.</description><subject>Angular momentum</subject><subject>Angular velocity</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Flywheels</subject><subject>Modelling</subject><subject>Principles</subject><subject>Rotation</subject><subject>Software</subject><subject>Structural analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAOyE1N8_JUoovqLhRcBcyeeiUODNOpkr_vZEW3Lm4XO7l45zDQegcyAKIZFdiQQBqkPUBmoEQgJUEeYhmhGiOKWevx-gk5zUhVCtVzxB-7H1Iqe3eKtv5MjZtc5urPlY5pFg1NtnOBV99v4eQTtFRtCmHs_2eo5fbm-flPV493T0sr1d4KM4TpjE654A2YKmtowMgjbLeC99YabUUXohax4bGwFg5Y3kqJbnmKkguNZuji53uMPafm5Ans-43Y8mWDVUcih6RslCXOyq7drJT23dmGNsPO24NEPNbhxFmX8d_8Fc__oFm8JH9AKymXxg</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Kotari, Sairam</creator><creator>Adepu, Nayan</creator><creator>Sharvirala, Pavan Sai</creator><creator>Ambati, Shravani</creator><creator>Gubbala, Tarun Goud</creator><creator>Venukumar, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221129</creationdate><title>Modelling and analysis of self balanced wheel</title><author>Kotari, Sairam ; Adepu, Nayan ; Sharvirala, Pavan Sai ; Ambati, Shravani ; Gubbala, Tarun Goud ; Venukumar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-2ffccc12b1a2a8fc110b7add5dba6a965d5589fb2fe33965f6a97764947e64693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular momentum</topic><topic>Angular velocity</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Flywheels</topic><topic>Modelling</topic><topic>Principles</topic><topic>Rotation</topic><topic>Software</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotari, Sairam</creatorcontrib><creatorcontrib>Adepu, Nayan</creatorcontrib><creatorcontrib>Sharvirala, Pavan Sai</creatorcontrib><creatorcontrib>Ambati, Shravani</creatorcontrib><creatorcontrib>Gubbala, Tarun Goud</creatorcontrib><creatorcontrib>Venukumar, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotari, Sairam</au><au>Adepu, Nayan</au><au>Sharvirala, Pavan Sai</au><au>Ambati, Shravani</au><au>Gubbala, Tarun Goud</au><au>Venukumar, S.</au><au>Deepak, K.</au><au>Venukumar, S.</au><au>Venkatesh, Begori</au><au>Rao P, Srinivasa</au><au>Shrivastava, Mukul</au><au>Reddy, P. Venkateshwar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modelling and analysis of self balanced wheel</atitle><btitle>AIP conference proceedings</btitle><date>2022-11-29</date><risdate>2022</risdate><volume>2648</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper contains the detailed description of modelling and analysis of the gyroscopic wheel that is used for stabilization of a two-wheeler. A gyroscopic wheel is a self-stabilising wheel in which a rotating flywheel is assembled inside a stationary wheel in order to keep the stationary wheel upright and prevent from falling down. The gyroscopic wheel works on the principle of conservation of angular momentum of the rotating flywheel and the stationary wheel. The flywheel is a solid disk which spins independently with respect to the wheel axis. When the flywheel rotates at a higher speed it creates a gyroscopic effect known as gyroscopic precession. The gyroscopic wheel detects the direction of fall and thus re-stabilises the wheel. Thus, the flywheel will help to maintain the wheel in upright position and balance itself by nullifying all the forces that cause the wheel to fall down. Autodesk Fusion 360 software is used for designing and modelling of the gyroscopic wheel. ANSYS software is used for structural analysis that includes to determine the equivalent stress and Total deformation of the rotating flywheel. Also, the mathematical calculations required to find the minimum angular velocity of the flywheel by the principle of conservation of angular momentum are also determined.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0118168</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2648 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2741110066
source AIP Journals Complete
subjects Angular momentum
Angular velocity
CAD
Computer aided design
Flywheels
Modelling
Principles
Rotation
Software
Structural analysis
title Modelling and analysis of self balanced wheel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modelling%20and%20analysis%20of%20self%20balanced%20wheel&rft.btitle=AIP%20conference%20proceedings&rft.au=Kotari,%20Sairam&rft.date=2022-11-29&rft.volume=2648&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0118168&rft_dat=%3Cproquest_scita%3E2741110066%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741110066&rft_id=info:pmid/&rfr_iscdi=true