Thermal analysis of stacked type supercapacitors for different material structures
The supercapacitors that are available today are among the most energy-efficient, have the fastest charging rates, and are environmentally friendly. Temperature has a significant impact on supercapacitor performance for various charging and discharging rates. We use an experimental technique along w...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2446 |
creator | Sivakumar, S. Thenmozhi, G. Ali, K. S. Sabir Kishore, M. S. |
description | The supercapacitors that are available today are among the most energy-efficient, have the fastest charging rates, and are environmentally friendly. Temperature has a significant impact on supercapacitor performance for various charging and discharging rates. We use an experimental technique along with an ANSYS simulation in this research to examine performance and safety aspects of super capacitors under various cooling conditions, both free and forced. As a result of the trials, it was found that the Aluminium-Aluminum type of super capacitor performs better than the other conditions. The heat produced is allocated to the Stackable core region when cell voltages are altered from 1.4 V to 2.8 V over time. Force convection cooling methods are used for optimal heat transmission and efficient supercapacitor design. As a result, a transient thermal analysis of a supercapacitor was carried out for various heat transfer coefficient values such as 1,10,20,30, and 50 W/m2.K.When the convective coefficient is less than 35W/m2K, the (induced temperature owing to heat generation) Supercapacitor maximum temperature (111 ° C, 97 ° C, 88 ° C) is higher than the maximum operating temperature (65 ° C). |
doi_str_mv | 10.1063/5.0108260 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2741109803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741109803</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2030-dc5310e434b31b11f98e26f70e6d2f7191b48ee0c598ca888b6cda762e58d0853</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0HAm7D1vWSTzR6l-A8KglTwFrLZF9zadtckK_TbW7HgzdNcfjPMDGOXCDMELW_UDBCM0HDEJqgUFpVGfcwmAHVZiFK-nbKzlFYAoq4qM2Evy3eKG7fmbuvWu9Ql3geesvMf1PK8G4incaDo3eB8l_uYeOgjb7sQKNI2843LFLu9P-U4-jxGSufsJLh1oouDTtnr_d1y_lgsnh-e5reLYhAgoWi9kghUyrKR2CCG2pDQoQLSrQgV1tiUhgi8qo13xphG-9ZVWpAyLRglp-zqN3eI_edIKdtVP8b9jGRFVSJCbUDuqetfKu37u9z1WzvEbuPizn710Sp7-MsObfgPRrA_B_8Z5DcWTG1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2741109803</pqid></control><display><type>conference_proceeding</type><title>Thermal analysis of stacked type supercapacitors for different material structures</title><source>AIP Journals Complete</source><creator>Sivakumar, S. ; Thenmozhi, G. ; Ali, K. S. Sabir ; Kishore, M. S.</creator><contributor>Sukanyadevi R ; Aranganayagam Kr ; Geethakarthi A ; Sreeharan B. N.</contributor><creatorcontrib>Sivakumar, S. ; Thenmozhi, G. ; Ali, K. S. Sabir ; Kishore, M. S. ; Sukanyadevi R ; Aranganayagam Kr ; Geethakarthi A ; Sreeharan B. N.</creatorcontrib><description>The supercapacitors that are available today are among the most energy-efficient, have the fastest charging rates, and are environmentally friendly. Temperature has a significant impact on supercapacitor performance for various charging and discharging rates. We use an experimental technique along with an ANSYS simulation in this research to examine performance and safety aspects of super capacitors under various cooling conditions, both free and forced. As a result of the trials, it was found that the Aluminium-Aluminum type of super capacitor performs better than the other conditions. The heat produced is allocated to the Stackable core region when cell voltages are altered from 1.4 V to 2.8 V over time. Force convection cooling methods are used for optimal heat transmission and efficient supercapacitor design. As a result, a transient thermal analysis of a supercapacitor was carried out for various heat transfer coefficient values such as 1,10,20,30, and 50 W/m2.K.When the convective coefficient is less than 35W/m2K, the (induced temperature owing to heat generation) Supercapacitor maximum temperature (111 ° C, 97 ° C, 88 ° C) is higher than the maximum operating temperature (65 ° C).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0108260</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; CAD ; Capacitors ; Charging ; Computer aided design ; Convection cooling ; Heat ; Heat generation ; Heat transfer coefficients ; Heat transmission ; Operating temperature ; Supercapacitors ; Thermal analysis</subject><ispartof>AIP conference proceedings, 2022, Vol.2446 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0108260$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Sukanyadevi R</contributor><contributor>Aranganayagam Kr</contributor><contributor>Geethakarthi A</contributor><contributor>Sreeharan B. N.</contributor><creatorcontrib>Sivakumar, S.</creatorcontrib><creatorcontrib>Thenmozhi, G.</creatorcontrib><creatorcontrib>Ali, K. S. Sabir</creatorcontrib><creatorcontrib>Kishore, M. S.</creatorcontrib><title>Thermal analysis of stacked type supercapacitors for different material structures</title><title>AIP conference proceedings</title><description>The supercapacitors that are available today are among the most energy-efficient, have the fastest charging rates, and are environmentally friendly. Temperature has a significant impact on supercapacitor performance for various charging and discharging rates. We use an experimental technique along with an ANSYS simulation in this research to examine performance and safety aspects of super capacitors under various cooling conditions, both free and forced. As a result of the trials, it was found that the Aluminium-Aluminum type of super capacitor performs better than the other conditions. The heat produced is allocated to the Stackable core region when cell voltages are altered from 1.4 V to 2.8 V over time. Force convection cooling methods are used for optimal heat transmission and efficient supercapacitor design. As a result, a transient thermal analysis of a supercapacitor was carried out for various heat transfer coefficient values such as 1,10,20,30, and 50 W/m2.K.When the convective coefficient is less than 35W/m2K, the (induced temperature owing to heat generation) Supercapacitor maximum temperature (111 ° C, 97 ° C, 88 ° C) is higher than the maximum operating temperature (65 ° C).</description><subject>Aluminum</subject><subject>CAD</subject><subject>Capacitors</subject><subject>Charging</subject><subject>Computer aided design</subject><subject>Convection cooling</subject><subject>Heat</subject><subject>Heat generation</subject><subject>Heat transfer coefficients</subject><subject>Heat transmission</subject><subject>Operating temperature</subject><subject>Supercapacitors</subject><subject>Thermal analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv0HAm7D1vWSTzR6l-A8KglTwFrLZF9zadtckK_TbW7HgzdNcfjPMDGOXCDMELW_UDBCM0HDEJqgUFpVGfcwmAHVZiFK-nbKzlFYAoq4qM2Evy3eKG7fmbuvWu9Ql3geesvMf1PK8G4incaDo3eB8l_uYeOgjb7sQKNI2843LFLu9P-U4-jxGSufsJLh1oouDTtnr_d1y_lgsnh-e5reLYhAgoWi9kghUyrKR2CCG2pDQoQLSrQgV1tiUhgi8qo13xphG-9ZVWpAyLRglp-zqN3eI_edIKdtVP8b9jGRFVSJCbUDuqetfKu37u9z1WzvEbuPizn710Sp7-MsObfgPRrA_B_8Z5DcWTG1m</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Sivakumar, S.</creator><creator>Thenmozhi, G.</creator><creator>Ali, K. S. Sabir</creator><creator>Kishore, M. S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221129</creationdate><title>Thermal analysis of stacked type supercapacitors for different material structures</title><author>Sivakumar, S. ; Thenmozhi, G. ; Ali, K. S. Sabir ; Kishore, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2030-dc5310e434b31b11f98e26f70e6d2f7191b48ee0c598ca888b6cda762e58d0853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>CAD</topic><topic>Capacitors</topic><topic>Charging</topic><topic>Computer aided design</topic><topic>Convection cooling</topic><topic>Heat</topic><topic>Heat generation</topic><topic>Heat transfer coefficients</topic><topic>Heat transmission</topic><topic>Operating temperature</topic><topic>Supercapacitors</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivakumar, S.</creatorcontrib><creatorcontrib>Thenmozhi, G.</creatorcontrib><creatorcontrib>Ali, K. S. Sabir</creatorcontrib><creatorcontrib>Kishore, M. S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivakumar, S.</au><au>Thenmozhi, G.</au><au>Ali, K. S. Sabir</au><au>Kishore, M. S.</au><au>Sukanyadevi R</au><au>Aranganayagam Kr</au><au>Geethakarthi A</au><au>Sreeharan B. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal analysis of stacked type supercapacitors for different material structures</atitle><btitle>AIP conference proceedings</btitle><date>2022-11-29</date><risdate>2022</risdate><volume>2446</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The supercapacitors that are available today are among the most energy-efficient, have the fastest charging rates, and are environmentally friendly. Temperature has a significant impact on supercapacitor performance for various charging and discharging rates. We use an experimental technique along with an ANSYS simulation in this research to examine performance and safety aspects of super capacitors under various cooling conditions, both free and forced. As a result of the trials, it was found that the Aluminium-Aluminum type of super capacitor performs better than the other conditions. The heat produced is allocated to the Stackable core region when cell voltages are altered from 1.4 V to 2.8 V over time. Force convection cooling methods are used for optimal heat transmission and efficient supercapacitor design. As a result, a transient thermal analysis of a supercapacitor was carried out for various heat transfer coefficient values such as 1,10,20,30, and 50 W/m2.K.When the convective coefficient is less than 35W/m2K, the (induced temperature owing to heat generation) Supercapacitor maximum temperature (111 ° C, 97 ° C, 88 ° C) is higher than the maximum operating temperature (65 ° C).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0108260</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2446 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2741109803 |
source | AIP Journals Complete |
subjects | Aluminum CAD Capacitors Charging Computer aided design Convection cooling Heat Heat generation Heat transfer coefficients Heat transmission Operating temperature Supercapacitors Thermal analysis |
title | Thermal analysis of stacked type supercapacitors for different material structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20analysis%20of%20stacked%20type%20supercapacitors%20for%20different%20material%20structures&rft.btitle=AIP%20conference%20proceedings&rft.au=Sivakumar,%20S.&rft.date=2022-11-29&rft.volume=2446&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0108260&rft_dat=%3Cproquest_scita%3E2741109803%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741109803&rft_id=info:pmid/&rfr_iscdi=true |