Numerical Simulation of Mechanically Adaptive Bone Remodeling Around Teeth and Implants: A Comparison with Clinical Images
The results of numerical simulation of mechanically adaptive bone remodeling have been compared with clinical images. Cone beam computed tomography (CBCT) images of multiple human subjects were superimposed to obtain a continuous bone density spatial distribution map inside the mandible supporting t...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2022-12, Vol.74 (12), p.4640-4651 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4651 |
---|---|
container_issue | 12 |
container_start_page | 4640 |
container_title | JOM (1989) |
container_volume | 74 |
creator | Su, Kangning Gao, Chengyao Qiu, Guoxian Yuan, Li Yang, Jie Du, Jing |
description | The results of numerical simulation of mechanically adaptive bone remodeling have been compared with clinical images. Cone beam computed tomography (CBCT) images of multiple human subjects were superimposed to obtain a continuous bone density spatial distribution map inside the mandible supporting the lateral incisor. Strain energy density in the bone under normal chewing and biting forces was computed using finite element analysis. A bone remodeling algorithm was implemented to compute the bone density distribution at equilibrium. Linear regression analysis was performed between the bone density computed by numerical simulation and that obtained from image analysis, for every trabecular bone element. The results exhibited close agreement with a coefficient of correlation of 0.8499. The bite forces were transmitted through tooth roots to the surrounding bone, thus stimulating high trabecular bone density near the roots. The bending and torsion moments on the sagittal section of the mandible resulted in lower bone density near the center than those towards the edge of the mandible. The results provide a new method to compare the results of adaptive bone remodeling simulation with experimental data, and also provide model parameters to predict the bone density distribution surrounding a dental implant that replaced the tooth. |
doi_str_mv | 10.1007/s11837-022-05533-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2741033109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741033109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-24b740c2c9669c16deef45d825dae47f6dfb05bf1130c720e79e387bf451b8a43</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AVcB19W82rTuavExMCrouA5pezuToW1q0irjrzdjBXeu7oH7nXPgBME5wZcEY3HlCEmYCDGlIY4ixkJ-EMxIxFlIkogceo25CHnCkuPgxLkt9iaeklnw9TS2YHWpGvSq27FRgzYdMjV6hHKjuv2j2aGsUv2gPwDdmA7QC7SmgkZ3a5RZM3YVWgEMG6S8WrR9o7rBXaMM5abtldXOB35q_8-95adp0ao1uNPgqFaNg7PfOw_e7m5X-UO4fL5f5NkyLBnhQ0h5ITguaZnGcVqSuAKoeVQlNKoUcFHHVV3gqKgJYbgUFINIgSWi8BApEsXZPLiYcntr3kdwg9ya0Xa-UlLBCWaM4NRTdKJKa5yzUMve6lbZnSRY7jeW08bSbyx_Npb7aDaZnIe7Ndi_6H9c370Hf94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741033109</pqid></control><display><type>article</type><title>Numerical Simulation of Mechanically Adaptive Bone Remodeling Around Teeth and Implants: A Comparison with Clinical Images</title><source>Springer Nature - Complete Springer Journals</source><creator>Su, Kangning ; Gao, Chengyao ; Qiu, Guoxian ; Yuan, Li ; Yang, Jie ; Du, Jing</creator><creatorcontrib>Su, Kangning ; Gao, Chengyao ; Qiu, Guoxian ; Yuan, Li ; Yang, Jie ; Du, Jing</creatorcontrib><description>The results of numerical simulation of mechanically adaptive bone remodeling have been compared with clinical images. Cone beam computed tomography (CBCT) images of multiple human subjects were superimposed to obtain a continuous bone density spatial distribution map inside the mandible supporting the lateral incisor. Strain energy density in the bone under normal chewing and biting forces was computed using finite element analysis. A bone remodeling algorithm was implemented to compute the bone density distribution at equilibrium. Linear regression analysis was performed between the bone density computed by numerical simulation and that obtained from image analysis, for every trabecular bone element. The results exhibited close agreement with a coefficient of correlation of 0.8499. The bite forces were transmitted through tooth roots to the surrounding bone, thus stimulating high trabecular bone density near the roots. The bending and torsion moments on the sagittal section of the mandible resulted in lower bone density near the center than those towards the edge of the mandible. The results provide a new method to compare the results of adaptive bone remodeling simulation with experimental data, and also provide model parameters to predict the bone density distribution surrounding a dental implant that replaced the tooth.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-022-05533-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bone density ; Boundary conditions ; Calibration ; Chemistry/Food Science ; Computed tomography ; Computer simulation ; Density distribution ; Dental implants ; Earth Sciences ; Electrons ; Energy ; Engineering ; Environment ; Equilibrium ; Finite element analysis ; Finite element method ; Human subjects ; Image analysis ; Interactions between Biomaterials and Biological Tissues and Cells ; Mathematical models ; Physics ; Regression analysis ; Roots ; Scanners ; Simulation ; Spatial distribution ; Strain energy ; Teeth ; Tomography</subject><ispartof>JOM (1989), 2022-12, Vol.74 (12), p.4640-4651</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>Copyright Springer Nature B.V. Dec 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-24b740c2c9669c16deef45d825dae47f6dfb05bf1130c720e79e387bf451b8a43</cites><orcidid>0000-0002-4875-5272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-022-05533-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-022-05533-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Su, Kangning</creatorcontrib><creatorcontrib>Gao, Chengyao</creatorcontrib><creatorcontrib>Qiu, Guoxian</creatorcontrib><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Du, Jing</creatorcontrib><title>Numerical Simulation of Mechanically Adaptive Bone Remodeling Around Teeth and Implants: A Comparison with Clinical Images</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>The results of numerical simulation of mechanically adaptive bone remodeling have been compared with clinical images. Cone beam computed tomography (CBCT) images of multiple human subjects were superimposed to obtain a continuous bone density spatial distribution map inside the mandible supporting the lateral incisor. Strain energy density in the bone under normal chewing and biting forces was computed using finite element analysis. A bone remodeling algorithm was implemented to compute the bone density distribution at equilibrium. Linear regression analysis was performed between the bone density computed by numerical simulation and that obtained from image analysis, for every trabecular bone element. The results exhibited close agreement with a coefficient of correlation of 0.8499. The bite forces were transmitted through tooth roots to the surrounding bone, thus stimulating high trabecular bone density near the roots. The bending and torsion moments on the sagittal section of the mandible resulted in lower bone density near the center than those towards the edge of the mandible. The results provide a new method to compare the results of adaptive bone remodeling simulation with experimental data, and also provide model parameters to predict the bone density distribution surrounding a dental implant that replaced the tooth.</description><subject>Algorithms</subject><subject>Bone density</subject><subject>Boundary conditions</subject><subject>Calibration</subject><subject>Chemistry/Food Science</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Density distribution</subject><subject>Dental implants</subject><subject>Earth Sciences</subject><subject>Electrons</subject><subject>Energy</subject><subject>Engineering</subject><subject>Environment</subject><subject>Equilibrium</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Human subjects</subject><subject>Image analysis</subject><subject>Interactions between Biomaterials and Biological Tissues and Cells</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Regression analysis</subject><subject>Roots</subject><subject>Scanners</subject><subject>Simulation</subject><subject>Spatial distribution</subject><subject>Strain energy</subject><subject>Teeth</subject><subject>Tomography</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYsoOI7-AVcB19W82rTuavExMCrouA5pezuToW1q0irjrzdjBXeu7oH7nXPgBME5wZcEY3HlCEmYCDGlIY4ixkJ-EMxIxFlIkogceo25CHnCkuPgxLkt9iaeklnw9TS2YHWpGvSq27FRgzYdMjV6hHKjuv2j2aGsUv2gPwDdmA7QC7SmgkZ3a5RZM3YVWgEMG6S8WrR9o7rBXaMM5abtldXOB35q_8-95adp0ao1uNPgqFaNg7PfOw_e7m5X-UO4fL5f5NkyLBnhQ0h5ITguaZnGcVqSuAKoeVQlNKoUcFHHVV3gqKgJYbgUFINIgSWi8BApEsXZPLiYcntr3kdwg9ya0Xa-UlLBCWaM4NRTdKJKa5yzUMve6lbZnSRY7jeW08bSbyx_Npb7aDaZnIe7Ndi_6H9c370Hf94</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Su, Kangning</creator><creator>Gao, Chengyao</creator><creator>Qiu, Guoxian</creator><creator>Yuan, Li</creator><creator>Yang, Jie</creator><creator>Du, Jing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-4875-5272</orcidid></search><sort><creationdate>20221201</creationdate><title>Numerical Simulation of Mechanically Adaptive Bone Remodeling Around Teeth and Implants: A Comparison with Clinical Images</title><author>Su, Kangning ; Gao, Chengyao ; Qiu, Guoxian ; Yuan, Li ; Yang, Jie ; Du, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-24b740c2c9669c16deef45d825dae47f6dfb05bf1130c720e79e387bf451b8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bone density</topic><topic>Boundary conditions</topic><topic>Calibration</topic><topic>Chemistry/Food Science</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Density distribution</topic><topic>Dental implants</topic><topic>Earth Sciences</topic><topic>Electrons</topic><topic>Energy</topic><topic>Engineering</topic><topic>Environment</topic><topic>Equilibrium</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Human subjects</topic><topic>Image analysis</topic><topic>Interactions between Biomaterials and Biological Tissues and Cells</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Regression analysis</topic><topic>Roots</topic><topic>Scanners</topic><topic>Simulation</topic><topic>Spatial distribution</topic><topic>Strain energy</topic><topic>Teeth</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Kangning</creatorcontrib><creatorcontrib>Gao, Chengyao</creatorcontrib><creatorcontrib>Qiu, Guoxian</creatorcontrib><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Du, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Kangning</au><au>Gao, Chengyao</au><au>Qiu, Guoxian</au><au>Yuan, Li</au><au>Yang, Jie</au><au>Du, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Mechanically Adaptive Bone Remodeling Around Teeth and Implants: A Comparison with Clinical Images</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>74</volume><issue>12</issue><spage>4640</spage><epage>4651</epage><pages>4640-4651</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>The results of numerical simulation of mechanically adaptive bone remodeling have been compared with clinical images. Cone beam computed tomography (CBCT) images of multiple human subjects were superimposed to obtain a continuous bone density spatial distribution map inside the mandible supporting the lateral incisor. Strain energy density in the bone under normal chewing and biting forces was computed using finite element analysis. A bone remodeling algorithm was implemented to compute the bone density distribution at equilibrium. Linear regression analysis was performed between the bone density computed by numerical simulation and that obtained from image analysis, for every trabecular bone element. The results exhibited close agreement with a coefficient of correlation of 0.8499. The bite forces were transmitted through tooth roots to the surrounding bone, thus stimulating high trabecular bone density near the roots. The bending and torsion moments on the sagittal section of the mandible resulted in lower bone density near the center than those towards the edge of the mandible. The results provide a new method to compare the results of adaptive bone remodeling simulation with experimental data, and also provide model parameters to predict the bone density distribution surrounding a dental implant that replaced the tooth.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-022-05533-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4875-5272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2022-12, Vol.74 (12), p.4640-4651 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2741033109 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Bone density Boundary conditions Calibration Chemistry/Food Science Computed tomography Computer simulation Density distribution Dental implants Earth Sciences Electrons Energy Engineering Environment Equilibrium Finite element analysis Finite element method Human subjects Image analysis Interactions between Biomaterials and Biological Tissues and Cells Mathematical models Physics Regression analysis Roots Scanners Simulation Spatial distribution Strain energy Teeth Tomography |
title | Numerical Simulation of Mechanically Adaptive Bone Remodeling Around Teeth and Implants: A Comparison with Clinical Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Mechanically%20Adaptive%20Bone%20Remodeling%20Around%20Teeth%20and%20Implants:%20A%20Comparison%20with%20Clinical%20Images&rft.jtitle=JOM%20(1989)&rft.au=Su,%20Kangning&rft.date=2022-12-01&rft.volume=74&rft.issue=12&rft.spage=4640&rft.epage=4651&rft.pages=4640-4651&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-022-05533-4&rft_dat=%3Cproquest_cross%3E2741033109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741033109&rft_id=info:pmid/&rfr_iscdi=true |