A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration
Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2022-12, Vol.50 (12), p.2303-2316 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2316 |
---|---|
container_issue | 12 |
container_start_page | 2303 |
container_title | Journal of the Indian Society of Remote Sensing |
container_volume | 50 |
creator | Jaber, Mustafa Musa Ali, Mohammed Hasan Abd, Sura Khalil Jassim, Mustafa Mohammed Alkhayyat, Ahmed Alreda, Baraa A. Alkhuwaylidee, Ahmed Rashid Alyousif, Shahad |
description | Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation. |
doi_str_mv | 10.1007/s12524-022-01604-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2741009563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741009563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-t3us9RNaFD_Ai4Rsdnbd0mZrklL892ZdwZunGWaedwYehE4pOaeE5BeBMskEJoxhQhUReLeHRqTIBeaEqP3UMymxUuTtEB2FsExDISkbofdptjD2o3WQzcF417oGX5oAVfYMa-Nia7NHEyN4l7jYg0226CpYZXXnsydYdxES6kK_uDLRpFnThuhNbDt3jA5qswpw8lvH6PXm-mV2h-cPt_ez6RxbTouIrSo5YdzkwJji1FJhWGmlLIlKFaypeCXrkklheFWU3NaccjGpRQlETJTgY3Q23N347nMLIeplt_UuvdQsF8lQIRVPFBso67sQPNR649u18V-aEt1r1INGnTTqH416l0J8CIUEuwb83-l_Ut9n-HWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741009563</pqid></control><display><type>article</type><title>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jaber, Mustafa Musa ; Ali, Mohammed Hasan ; Abd, Sura Khalil ; Jassim, Mustafa Mohammed ; Alkhayyat, Ahmed ; Alreda, Baraa A. ; Alkhuwaylidee, Ahmed Rashid ; Alyousif, Shahad</creator><creatorcontrib>Jaber, Mustafa Musa ; Ali, Mohammed Hasan ; Abd, Sura Khalil ; Jassim, Mustafa Mohammed ; Alkhayyat, Ahmed ; Alreda, Baraa A. ; Alkhuwaylidee, Ahmed Rashid ; Alyousif, Shahad</creatorcontrib><description>Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-022-01604-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Center of gravity ; Earth and Environmental Science ; Earth Sciences ; Image registration ; Image resolution ; Image segmentation ; Machine learning ; Pattern matching ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article ; Satellite imagery ; Satellites ; Semantic segmentation ; Semantics</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2022-12, Vol.50 (12), p.2303-2316</ispartof><rights>Indian Society of Remote Sensing 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</citedby><cites>FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-022-01604-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-022-01604-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jaber, Mustafa Musa</creatorcontrib><creatorcontrib>Ali, Mohammed Hasan</creatorcontrib><creatorcontrib>Abd, Sura Khalil</creatorcontrib><creatorcontrib>Jassim, Mustafa Mohammed</creatorcontrib><creatorcontrib>Alkhayyat, Ahmed</creatorcontrib><creatorcontrib>Alreda, Baraa A.</creatorcontrib><creatorcontrib>Alkhuwaylidee, Ahmed Rashid</creatorcontrib><creatorcontrib>Alyousif, Shahad</creatorcontrib><title>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.</description><subject>Algorithms</subject><subject>Center of gravity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Image registration</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Pattern matching</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-t3us9RNaFD_Ai4Rsdnbd0mZrklL892ZdwZunGWaedwYehE4pOaeE5BeBMskEJoxhQhUReLeHRqTIBeaEqP3UMymxUuTtEB2FsExDISkbofdptjD2o3WQzcF417oGX5oAVfYMa-Nia7NHEyN4l7jYg0226CpYZXXnsydYdxES6kK_uDLRpFnThuhNbDt3jA5qswpw8lvH6PXm-mV2h-cPt_ez6RxbTouIrSo5YdzkwJji1FJhWGmlLIlKFaypeCXrkklheFWU3NaccjGpRQlETJTgY3Q23N347nMLIeplt_UuvdQsF8lQIRVPFBso67sQPNR649u18V-aEt1r1INGnTTqH416l0J8CIUEuwb83-l_Ut9n-HWv</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Jaber, Mustafa Musa</creator><creator>Ali, Mohammed Hasan</creator><creator>Abd, Sura Khalil</creator><creator>Jassim, Mustafa Mohammed</creator><creator>Alkhayyat, Ahmed</creator><creator>Alreda, Baraa A.</creator><creator>Alkhuwaylidee, Ahmed Rashid</creator><creator>Alyousif, Shahad</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</title><author>Jaber, Mustafa Musa ; Ali, Mohammed Hasan ; Abd, Sura Khalil ; Jassim, Mustafa Mohammed ; Alkhayyat, Ahmed ; Alreda, Baraa A. ; Alkhuwaylidee, Ahmed Rashid ; Alyousif, Shahad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Center of gravity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Image registration</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Pattern matching</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaber, Mustafa Musa</creatorcontrib><creatorcontrib>Ali, Mohammed Hasan</creatorcontrib><creatorcontrib>Abd, Sura Khalil</creatorcontrib><creatorcontrib>Jassim, Mustafa Mohammed</creatorcontrib><creatorcontrib>Alkhayyat, Ahmed</creatorcontrib><creatorcontrib>Alreda, Baraa A.</creatorcontrib><creatorcontrib>Alkhuwaylidee, Ahmed Rashid</creatorcontrib><creatorcontrib>Alyousif, Shahad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaber, Mustafa Musa</au><au>Ali, Mohammed Hasan</au><au>Abd, Sura Khalil</au><au>Jassim, Mustafa Mohammed</au><au>Alkhayyat, Ahmed</au><au>Alreda, Baraa A.</au><au>Alkhuwaylidee, Ahmed Rashid</au><au>Alyousif, Shahad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>50</volume><issue>12</issue><spage>2303</spage><epage>2316</epage><pages>2303-2316</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-022-01604-w</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-660X |
ispartof | Journal of the Indian Society of Remote Sensing, 2022-12, Vol.50 (12), p.2303-2316 |
issn | 0255-660X 0974-3006 |
language | eng |
recordid | cdi_proquest_journals_2741009563 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Center of gravity Earth and Environmental Science Earth Sciences Image registration Image resolution Image segmentation Machine learning Pattern matching Remote sensing Remote Sensing/Photogrammetry Research Article Satellite imagery Satellites Semantic segmentation Semantics |
title | A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning-Based%20Semantic%20Pattern%20Matching%20Model%20for%20Remote%20Sensing%20Data%20Registration&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Jaber,%20Mustafa%20Musa&rft.date=2022-12-01&rft.volume=50&rft.issue=12&rft.spage=2303&rft.epage=2316&rft.pages=2303-2316&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-022-01604-w&rft_dat=%3Cproquest_cross%3E2741009563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741009563&rft_id=info:pmid/&rfr_iscdi=true |