A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration

Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2022-12, Vol.50 (12), p.2303-2316
Hauptverfasser: Jaber, Mustafa Musa, Ali, Mohammed Hasan, Abd, Sura Khalil, Jassim, Mustafa Mohammed, Alkhayyat, Ahmed, Alreda, Baraa A., Alkhuwaylidee, Ahmed Rashid, Alyousif, Shahad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2316
container_issue 12
container_start_page 2303
container_title Journal of the Indian Society of Remote Sensing
container_volume 50
creator Jaber, Mustafa Musa
Ali, Mohammed Hasan
Abd, Sura Khalil
Jassim, Mustafa Mohammed
Alkhayyat, Ahmed
Alreda, Baraa A.
Alkhuwaylidee, Ahmed Rashid
Alyousif, Shahad
description Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.
doi_str_mv 10.1007/s12524-022-01604-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2741009563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741009563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-t3us9RNaFD_Ai4Rsdnbd0mZrklL892ZdwZunGWaedwYehE4pOaeE5BeBMskEJoxhQhUReLeHRqTIBeaEqP3UMymxUuTtEB2FsExDISkbofdptjD2o3WQzcF417oGX5oAVfYMa-Nia7NHEyN4l7jYg0226CpYZXXnsydYdxES6kK_uDLRpFnThuhNbDt3jA5qswpw8lvH6PXm-mV2h-cPt_ez6RxbTouIrSo5YdzkwJji1FJhWGmlLIlKFaypeCXrkklheFWU3NaccjGpRQlETJTgY3Q23N347nMLIeplt_UuvdQsF8lQIRVPFBso67sQPNR649u18V-aEt1r1INGnTTqH416l0J8CIUEuwb83-l_Ut9n-HWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741009563</pqid></control><display><type>article</type><title>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jaber, Mustafa Musa ; Ali, Mohammed Hasan ; Abd, Sura Khalil ; Jassim, Mustafa Mohammed ; Alkhayyat, Ahmed ; Alreda, Baraa A. ; Alkhuwaylidee, Ahmed Rashid ; Alyousif, Shahad</creator><creatorcontrib>Jaber, Mustafa Musa ; Ali, Mohammed Hasan ; Abd, Sura Khalil ; Jassim, Mustafa Mohammed ; Alkhayyat, Ahmed ; Alreda, Baraa A. ; Alkhuwaylidee, Ahmed Rashid ; Alyousif, Shahad</creatorcontrib><description>Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-022-01604-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Center of gravity ; Earth and Environmental Science ; Earth Sciences ; Image registration ; Image resolution ; Image segmentation ; Machine learning ; Pattern matching ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article ; Satellite imagery ; Satellites ; Semantic segmentation ; Semantics</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2022-12, Vol.50 (12), p.2303-2316</ispartof><rights>Indian Society of Remote Sensing 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</citedby><cites>FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-022-01604-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-022-01604-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jaber, Mustafa Musa</creatorcontrib><creatorcontrib>Ali, Mohammed Hasan</creatorcontrib><creatorcontrib>Abd, Sura Khalil</creatorcontrib><creatorcontrib>Jassim, Mustafa Mohammed</creatorcontrib><creatorcontrib>Alkhayyat, Ahmed</creatorcontrib><creatorcontrib>Alreda, Baraa A.</creatorcontrib><creatorcontrib>Alkhuwaylidee, Ahmed Rashid</creatorcontrib><creatorcontrib>Alyousif, Shahad</creatorcontrib><title>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.</description><subject>Algorithms</subject><subject>Center of gravity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Image registration</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Pattern matching</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-t3us9RNaFD_Ai4Rsdnbd0mZrklL892ZdwZunGWaedwYehE4pOaeE5BeBMskEJoxhQhUReLeHRqTIBeaEqP3UMymxUuTtEB2FsExDISkbofdptjD2o3WQzcF417oGX5oAVfYMa-Nia7NHEyN4l7jYg0226CpYZXXnsydYdxES6kK_uDLRpFnThuhNbDt3jA5qswpw8lvH6PXm-mV2h-cPt_ez6RxbTouIrSo5YdzkwJji1FJhWGmlLIlKFaypeCXrkklheFWU3NaccjGpRQlETJTgY3Q23N347nMLIeplt_UuvdQsF8lQIRVPFBso67sQPNR649u18V-aEt1r1INGnTTqH416l0J8CIUEuwb83-l_Ut9n-HWv</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Jaber, Mustafa Musa</creator><creator>Ali, Mohammed Hasan</creator><creator>Abd, Sura Khalil</creator><creator>Jassim, Mustafa Mohammed</creator><creator>Alkhayyat, Ahmed</creator><creator>Alreda, Baraa A.</creator><creator>Alkhuwaylidee, Ahmed Rashid</creator><creator>Alyousif, Shahad</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</title><author>Jaber, Mustafa Musa ; Ali, Mohammed Hasan ; Abd, Sura Khalil ; Jassim, Mustafa Mohammed ; Alkhayyat, Ahmed ; Alreda, Baraa A. ; Alkhuwaylidee, Ahmed Rashid ; Alyousif, Shahad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c6b3023a7e22631c14a2bc55b062bcecad3d5fb254a3d9b3cf31348f4be048643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Center of gravity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Image registration</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Pattern matching</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaber, Mustafa Musa</creatorcontrib><creatorcontrib>Ali, Mohammed Hasan</creatorcontrib><creatorcontrib>Abd, Sura Khalil</creatorcontrib><creatorcontrib>Jassim, Mustafa Mohammed</creatorcontrib><creatorcontrib>Alkhayyat, Ahmed</creatorcontrib><creatorcontrib>Alreda, Baraa A.</creatorcontrib><creatorcontrib>Alkhuwaylidee, Ahmed Rashid</creatorcontrib><creatorcontrib>Alyousif, Shahad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaber, Mustafa Musa</au><au>Ali, Mohammed Hasan</au><au>Abd, Sura Khalil</au><au>Jassim, Mustafa Mohammed</au><au>Alkhayyat, Ahmed</au><au>Alreda, Baraa A.</au><au>Alkhuwaylidee, Ahmed Rashid</au><au>Alyousif, Shahad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>50</volume><issue>12</issue><spage>2303</spage><epage>2316</epage><pages>2303-2316</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>Remote sensing image registration can benefit from a machine learning method based on the likelihood of predicting semantic spatial position distributions. Semantic segmentation of images has been revolutionized due to the accessibility of high-resolution remote sensing images and the advancement of machine learning techniques. This system captures the semantic distribution location of the matching reference picture, which ML mapped using learning-based algorithms. The affine invariant is utilized to determine the semantic template’s barycenter position and the pixel’s center, which changes the semantic border alignment problem into a point-to-point matching issue for the machine learning-based semantic pattern matching (ML-SPM) model. The first step examines how various factors such as template radius, training label filling form, or loss function combination affect matching accuracy. In this second step, the matching of sub-images (MSI) images is compared using heatmaps created from the expected similarity between the images’ cropped sub-images. Images having radiometric discrepancies are matched with excellent accuracy by the approach. SAR-optical image matching has never been easier, and now even large-scale sceneries can be registered using this approach, which is a significant advance over previous methods. Optical satellite imaging or multi-sensor stereogrammetry can be combined with both forms of data to enhance geolocation.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-022-01604-w</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2022-12, Vol.50 (12), p.2303-2316
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2741009563
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Center of gravity
Earth and Environmental Science
Earth Sciences
Image registration
Image resolution
Image segmentation
Machine learning
Pattern matching
Remote sensing
Remote Sensing/Photogrammetry
Research Article
Satellite imagery
Satellites
Semantic segmentation
Semantics
title A Machine Learning-Based Semantic Pattern Matching Model for Remote Sensing Data Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning-Based%20Semantic%20Pattern%20Matching%20Model%20for%20Remote%20Sensing%20Data%20Registration&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Jaber,%20Mustafa%20Musa&rft.date=2022-12-01&rft.volume=50&rft.issue=12&rft.spage=2303&rft.epage=2316&rft.pages=2303-2316&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-022-01604-w&rft_dat=%3Cproquest_cross%3E2741009563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741009563&rft_id=info:pmid/&rfr_iscdi=true