Upcycling waste poly(ethylene terephthalate) into polymer electrolytes
Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-11, Vol.1 (46), p.24468-24474 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24474 |
---|---|
container_issue | 46 |
container_start_page | 24468 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Tan, Ming Yan Goh, Leonard Safanama, Dorsasadat Loh, Wei Wei Ding, Ning Chien, Sheau Wei Goh, Shermin S Thitsartarn, Warintorn Lim, Jason Y. C Fam, Derrick W. H |
description | Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy.
The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated. |
doi_str_mv | 10.1039/d2ta06692k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2740822166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740822166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</originalsourceid><addsrcrecordid>eNpFkMFLwzAUh4MoOOYu3oWCFxWqL2mbNMcxnYoDL9u5pOmL7ezammRI_3vrKvNdfu8HH-_BR8glhXsKkXwomFfAuWSfJ2TCIIFQxJKfHvc0PScz57YwTArApZyQ5abTva6r5iP4Vs5j0LV1f4O-7GtsMPBosSt9qWrl8TaoGt8eiB3aAGvU3g7Fo7sgZ0bVDmd_OSWb5dN68RKu3p9fF_NVqCMqfMjAKG2KuICE51EM1HCTGCnZEJoWKpd5ThUKQXmeJFQCMwwFS5niUZpLEU3J9Xi3s-3XHp3Ptu3eNsPLjIkYUsYo5wN1N1Lats5ZNFlnq52yfUYh-1WVPbL1_KDqbYCvRtg6feT-VUY_Ex9l2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740822166</pqid></control><display><type>article</type><title>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tan, Ming Yan ; Goh, Leonard ; Safanama, Dorsasadat ; Loh, Wei Wei ; Ding, Ning ; Chien, Sheau Wei ; Goh, Shermin S ; Thitsartarn, Warintorn ; Lim, Jason Y. C ; Fam, Derrick W. H</creator><creatorcontrib>Tan, Ming Yan ; Goh, Leonard ; Safanama, Dorsasadat ; Loh, Wei Wei ; Ding, Ning ; Chien, Sheau Wei ; Goh, Shermin S ; Thitsartarn, Warintorn ; Lim, Jason Y. C ; Fam, Derrick W. H</creatorcontrib><description>Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy.
The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta06692k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Design ; Electrolytes ; Energy storage ; Ethylene ; Hazard mitigation ; Ion currents ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Plastic debris ; Polyethylene terephthalate ; Polymers ; Polyurethane ; Polyurethane resins ; Rechargeable batteries ; Rigidity ; Solid electrolytes ; Solvolysis ; Storage batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.1 (46), p.24468-24474</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</citedby><cites>FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</cites><orcidid>0000-0002-8607-3184 ; 0000-0002-0131-7611 ; 0000-0002-8020-1720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tan, Ming Yan</creatorcontrib><creatorcontrib>Goh, Leonard</creatorcontrib><creatorcontrib>Safanama, Dorsasadat</creatorcontrib><creatorcontrib>Loh, Wei Wei</creatorcontrib><creatorcontrib>Ding, Ning</creatorcontrib><creatorcontrib>Chien, Sheau Wei</creatorcontrib><creatorcontrib>Goh, Shermin S</creatorcontrib><creatorcontrib>Thitsartarn, Warintorn</creatorcontrib><creatorcontrib>Lim, Jason Y. C</creatorcontrib><creatorcontrib>Fam, Derrick W. H</creatorcontrib><title>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy.
The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.</description><subject>Batteries</subject><subject>Design</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Ethylene</subject><subject>Hazard mitigation</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Plastic debris</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Rechargeable batteries</subject><subject>Rigidity</subject><subject>Solid electrolytes</subject><subject>Solvolysis</subject><subject>Storage batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUh4MoOOYu3oWCFxWqL2mbNMcxnYoDL9u5pOmL7ezammRI_3vrKvNdfu8HH-_BR8glhXsKkXwomFfAuWSfJ2TCIIFQxJKfHvc0PScz57YwTArApZyQ5abTva6r5iP4Vs5j0LV1f4O-7GtsMPBosSt9qWrl8TaoGt8eiB3aAGvU3g7Fo7sgZ0bVDmd_OSWb5dN68RKu3p9fF_NVqCMqfMjAKG2KuICE51EM1HCTGCnZEJoWKpd5ThUKQXmeJFQCMwwFS5niUZpLEU3J9Xi3s-3XHp3Ptu3eNsPLjIkYUsYo5wN1N1Lats5ZNFlnq52yfUYh-1WVPbL1_KDqbYCvRtg6feT-VUY_Ex9l2w</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Tan, Ming Yan</creator><creator>Goh, Leonard</creator><creator>Safanama, Dorsasadat</creator><creator>Loh, Wei Wei</creator><creator>Ding, Ning</creator><creator>Chien, Sheau Wei</creator><creator>Goh, Shermin S</creator><creator>Thitsartarn, Warintorn</creator><creator>Lim, Jason Y. C</creator><creator>Fam, Derrick W. H</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8607-3184</orcidid><orcidid>https://orcid.org/0000-0002-0131-7611</orcidid><orcidid>https://orcid.org/0000-0002-8020-1720</orcidid></search><sort><creationdate>20221129</creationdate><title>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</title><author>Tan, Ming Yan ; Goh, Leonard ; Safanama, Dorsasadat ; Loh, Wei Wei ; Ding, Ning ; Chien, Sheau Wei ; Goh, Shermin S ; Thitsartarn, Warintorn ; Lim, Jason Y. C ; Fam, Derrick W. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Design</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Ethylene</topic><topic>Hazard mitigation</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Plastic debris</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Rechargeable batteries</topic><topic>Rigidity</topic><topic>Solid electrolytes</topic><topic>Solvolysis</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ming Yan</creatorcontrib><creatorcontrib>Goh, Leonard</creatorcontrib><creatorcontrib>Safanama, Dorsasadat</creatorcontrib><creatorcontrib>Loh, Wei Wei</creatorcontrib><creatorcontrib>Ding, Ning</creatorcontrib><creatorcontrib>Chien, Sheau Wei</creatorcontrib><creatorcontrib>Goh, Shermin S</creatorcontrib><creatorcontrib>Thitsartarn, Warintorn</creatorcontrib><creatorcontrib>Lim, Jason Y. C</creatorcontrib><creatorcontrib>Fam, Derrick W. H</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ming Yan</au><au>Goh, Leonard</au><au>Safanama, Dorsasadat</au><au>Loh, Wei Wei</au><au>Ding, Ning</au><au>Chien, Sheau Wei</au><au>Goh, Shermin S</au><au>Thitsartarn, Warintorn</au><au>Lim, Jason Y. C</au><au>Fam, Derrick W. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-11-29</date><risdate>2022</risdate><volume>1</volume><issue>46</issue><spage>24468</spage><epage>24474</epage><pages>24468-24474</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy.
The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta06692k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8607-3184</orcidid><orcidid>https://orcid.org/0000-0002-0131-7611</orcidid><orcidid>https://orcid.org/0000-0002-8020-1720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.1 (46), p.24468-24474 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2740822166 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Batteries Design Electrolytes Energy storage Ethylene Hazard mitigation Ion currents Lithium Lithium-ion batteries Molten salt electrolytes Plastic debris Polyethylene terephthalate Polymers Polyurethane Polyurethane resins Rechargeable batteries Rigidity Solid electrolytes Solvolysis Storage batteries |
title | Upcycling waste poly(ethylene terephthalate) into polymer electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upcycling%20waste%20poly(ethylene%20terephthalate)%20into%20polymer%20electrolytes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Tan,%20Ming%20Yan&rft.date=2022-11-29&rft.volume=1&rft.issue=46&rft.spage=24468&rft.epage=24474&rft.pages=24468-24474&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta06692k&rft_dat=%3Cproquest_rsc_p%3E2740822166%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740822166&rft_id=info:pmid/&rfr_iscdi=true |