Upcycling waste poly(ethylene terephthalate) into polymer electrolytes

Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-11, Vol.1 (46), p.24468-24474
Hauptverfasser: Tan, Ming Yan, Goh, Leonard, Safanama, Dorsasadat, Loh, Wei Wei, Ding, Ning, Chien, Sheau Wei, Goh, Shermin S, Thitsartarn, Warintorn, Lim, Jason Y. C, Fam, Derrick W. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24474
container_issue 46
container_start_page 24468
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Tan, Ming Yan
Goh, Leonard
Safanama, Dorsasadat
Loh, Wei Wei
Ding, Ning
Chien, Sheau Wei
Goh, Shermin S
Thitsartarn, Warintorn
Lim, Jason Y. C
Fam, Derrick W. H
description Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy. The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.
doi_str_mv 10.1039/d2ta06692k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2740822166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740822166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</originalsourceid><addsrcrecordid>eNpFkMFLwzAUh4MoOOYu3oWCFxWqL2mbNMcxnYoDL9u5pOmL7ezammRI_3vrKvNdfu8HH-_BR8glhXsKkXwomFfAuWSfJ2TCIIFQxJKfHvc0PScz57YwTArApZyQ5abTva6r5iP4Vs5j0LV1f4O-7GtsMPBosSt9qWrl8TaoGt8eiB3aAGvU3g7Fo7sgZ0bVDmd_OSWb5dN68RKu3p9fF_NVqCMqfMjAKG2KuICE51EM1HCTGCnZEJoWKpd5ThUKQXmeJFQCMwwFS5niUZpLEU3J9Xi3s-3XHp3Ptu3eNsPLjIkYUsYo5wN1N1Lats5ZNFlnq52yfUYh-1WVPbL1_KDqbYCvRtg6feT-VUY_Ex9l2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740822166</pqid></control><display><type>article</type><title>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tan, Ming Yan ; Goh, Leonard ; Safanama, Dorsasadat ; Loh, Wei Wei ; Ding, Ning ; Chien, Sheau Wei ; Goh, Shermin S ; Thitsartarn, Warintorn ; Lim, Jason Y. C ; Fam, Derrick W. H</creator><creatorcontrib>Tan, Ming Yan ; Goh, Leonard ; Safanama, Dorsasadat ; Loh, Wei Wei ; Ding, Ning ; Chien, Sheau Wei ; Goh, Shermin S ; Thitsartarn, Warintorn ; Lim, Jason Y. C ; Fam, Derrick W. H</creatorcontrib><description>Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy. The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta06692k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Design ; Electrolytes ; Energy storage ; Ethylene ; Hazard mitigation ; Ion currents ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Plastic debris ; Polyethylene terephthalate ; Polymers ; Polyurethane ; Polyurethane resins ; Rechargeable batteries ; Rigidity ; Solid electrolytes ; Solvolysis ; Storage batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.1 (46), p.24468-24474</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</citedby><cites>FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</cites><orcidid>0000-0002-8607-3184 ; 0000-0002-0131-7611 ; 0000-0002-8020-1720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tan, Ming Yan</creatorcontrib><creatorcontrib>Goh, Leonard</creatorcontrib><creatorcontrib>Safanama, Dorsasadat</creatorcontrib><creatorcontrib>Loh, Wei Wei</creatorcontrib><creatorcontrib>Ding, Ning</creatorcontrib><creatorcontrib>Chien, Sheau Wei</creatorcontrib><creatorcontrib>Goh, Shermin S</creatorcontrib><creatorcontrib>Thitsartarn, Warintorn</creatorcontrib><creatorcontrib>Lim, Jason Y. C</creatorcontrib><creatorcontrib>Fam, Derrick W. H</creatorcontrib><title>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy. The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.</description><subject>Batteries</subject><subject>Design</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Ethylene</subject><subject>Hazard mitigation</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Plastic debris</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Rechargeable batteries</subject><subject>Rigidity</subject><subject>Solid electrolytes</subject><subject>Solvolysis</subject><subject>Storage batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUh4MoOOYu3oWCFxWqL2mbNMcxnYoDL9u5pOmL7ezammRI_3vrKvNdfu8HH-_BR8glhXsKkXwomFfAuWSfJ2TCIIFQxJKfHvc0PScz57YwTArApZyQ5abTva6r5iP4Vs5j0LV1f4O-7GtsMPBosSt9qWrl8TaoGt8eiB3aAGvU3g7Fo7sgZ0bVDmd_OSWb5dN68RKu3p9fF_NVqCMqfMjAKG2KuICE51EM1HCTGCnZEJoWKpd5ThUKQXmeJFQCMwwFS5niUZpLEU3J9Xi3s-3XHp3Ptu3eNsPLjIkYUsYo5wN1N1Lats5ZNFlnq52yfUYh-1WVPbL1_KDqbYCvRtg6feT-VUY_Ex9l2w</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Tan, Ming Yan</creator><creator>Goh, Leonard</creator><creator>Safanama, Dorsasadat</creator><creator>Loh, Wei Wei</creator><creator>Ding, Ning</creator><creator>Chien, Sheau Wei</creator><creator>Goh, Shermin S</creator><creator>Thitsartarn, Warintorn</creator><creator>Lim, Jason Y. C</creator><creator>Fam, Derrick W. H</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8607-3184</orcidid><orcidid>https://orcid.org/0000-0002-0131-7611</orcidid><orcidid>https://orcid.org/0000-0002-8020-1720</orcidid></search><sort><creationdate>20221129</creationdate><title>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</title><author>Tan, Ming Yan ; Goh, Leonard ; Safanama, Dorsasadat ; Loh, Wei Wei ; Ding, Ning ; Chien, Sheau Wei ; Goh, Shermin S ; Thitsartarn, Warintorn ; Lim, Jason Y. C ; Fam, Derrick W. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-20facfd4d056b3401f6f5f9926f5c1dab9bb1ae7716b551902f2e7282a638b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Design</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Ethylene</topic><topic>Hazard mitigation</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Plastic debris</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Rechargeable batteries</topic><topic>Rigidity</topic><topic>Solid electrolytes</topic><topic>Solvolysis</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ming Yan</creatorcontrib><creatorcontrib>Goh, Leonard</creatorcontrib><creatorcontrib>Safanama, Dorsasadat</creatorcontrib><creatorcontrib>Loh, Wei Wei</creatorcontrib><creatorcontrib>Ding, Ning</creatorcontrib><creatorcontrib>Chien, Sheau Wei</creatorcontrib><creatorcontrib>Goh, Shermin S</creatorcontrib><creatorcontrib>Thitsartarn, Warintorn</creatorcontrib><creatorcontrib>Lim, Jason Y. C</creatorcontrib><creatorcontrib>Fam, Derrick W. H</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ming Yan</au><au>Goh, Leonard</au><au>Safanama, Dorsasadat</au><au>Loh, Wei Wei</au><au>Ding, Ning</au><au>Chien, Sheau Wei</au><au>Goh, Shermin S</au><au>Thitsartarn, Warintorn</au><au>Lim, Jason Y. C</au><au>Fam, Derrick W. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upcycling waste poly(ethylene terephthalate) into polymer electrolytes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-11-29</date><risdate>2022</risdate><volume>1</volume><issue>46</issue><spage>24468</spage><epage>24474</epage><pages>24468-24474</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-ion batteries (LiB) play an important role in energy storage in our increasingly-electrified modern world, with polymer electrolyte (PE) materials poised to revolutionise battery design by eliminating the most critical safety hazards associated with liquid electrolytes in use today. Although there is growing focus on sustainable PE designs, the use of abundant waste commodity plastics as an alternative feedstock for PE production remains surprisingly overlooked. Herein, we report the first examples of PEs obtained by chemical upcycling of waste poly(ethylene terephthalate) (PET) bottles, exploiting the susceptibility of PET's ester linkages for chemical solvolysis and the structural rigidity of the terephthalate aromatic components to allow for free-standing conductive film formation. Our PET-derived polyurethane PEs show promising ionic conductivity when used as both solid and gel polymer electrolytes, and can be assembled into a working lithium-ion battery. This sets a precedent for designing future sustainable PE materials from waste plastics and contributing towards a circular materials economy. The first working lithium-ion battery containing polymer electrolytes derived from waste poly(ethylene terephthalate) beverage bottles is demonstrated.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta06692k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8607-3184</orcidid><orcidid>https://orcid.org/0000-0002-0131-7611</orcidid><orcidid>https://orcid.org/0000-0002-8020-1720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.1 (46), p.24468-24474
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2740822166
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Design
Electrolytes
Energy storage
Ethylene
Hazard mitigation
Ion currents
Lithium
Lithium-ion batteries
Molten salt electrolytes
Plastic debris
Polyethylene terephthalate
Polymers
Polyurethane
Polyurethane resins
Rechargeable batteries
Rigidity
Solid electrolytes
Solvolysis
Storage batteries
title Upcycling waste poly(ethylene terephthalate) into polymer electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upcycling%20waste%20poly(ethylene%20terephthalate)%20into%20polymer%20electrolytes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Tan,%20Ming%20Yan&rft.date=2022-11-29&rft.volume=1&rft.issue=46&rft.spage=24468&rft.epage=24474&rft.pages=24468-24474&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta06692k&rft_dat=%3Cproquest_rsc_p%3E2740822166%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740822166&rft_id=info:pmid/&rfr_iscdi=true