SrxTi0.6Fe0.4O3−δ (x = 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)
Ammonia is a promising carbon-free energy carrier. Ammonia is usually industrially synthesized via the Haber–Bosch method under high pressures and temperatures, which requires high energy consumption. In comparison, the electrocatalytic reduction of N2 is a green, eco-friendly, and pollution-free me...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24813-24823 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24823 |
---|---|
container_issue | 46 |
container_start_page | 24813 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Wang, Kaihui Chen, Huili Si-Dian, Li Shao, Zongping |
description | Ammonia is a promising carbon-free energy carrier. Ammonia is usually industrially synthesized via the Haber–Bosch method under high pressures and temperatures, which requires high energy consumption. In comparison, the electrocatalytic reduction of N2 is a green, eco-friendly, and pollution-free method for ammonia synthesis if the electricity is generated using a renewable source. Therefore, the development of highly efficient electrocatalysts for the N2 reduction reaction (NRR) would be significant. Herein, perovskites SrxTi0.6Fe0.4O3−δ (SxTF, x = 1 and 0.9) with tunable oxygen vacancies (OVs) were prepared and used as NRR electrodes for proton-conducting solid oxide electrolysis cells (PCECs). These PCECs were used to synthesize NH3 from N2 and H2. STF and S0.9TF showed maximum ammonia synthesis rates of 6.84 × 10−9 (±0.25 × 10−9) mol cm−2 s−1 and 4.09 × 10−9 (±0.80 × 10−9) mol cm−2 s−1, with corresponding Faraday efficiencies of 2.79% (±0.12%) and 2.01% (±0.09%) at 650 °C and 0.6 V. The enhanced NRR performance of S0.9TF was mainly attributed to the improved adsorption and activation of N2 by the abundant OVs, Ti3+ and the exsolved Fe active particles. This work offers a promising strategy for the design of materials for the electrochemical synthesis of NH3via PCECs. |
doi_str_mv | 10.1039/d2ta01669a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2740821740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740821740</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-9c42216d6bf24774bbd86ed19b15e6761ab5a3eccbe257102fb4451e1395e40e3</originalsourceid><addsrcrecordid>eNo9TsFKw0AUXETBUr34BQteWjDx7WazyR48SGhVKFSwnstm86IpabZmt9LePHr2W_wOP8IvcUFxDvNmYJg3hJwxiBkk6rLiXgOTUukDMuCQQpQJJQ__dZ4fk1PnVhCQA0ilBuTtod8tGojlFCEW8-T7_ePrk4529IqyGC4oxGpMjfa63TvvaG17qtdr2zWaun3nn9E1jr4Gt-mtt11kbFdtjW-6J-ps21TU7poKKbZofG9DSYgbbFtHR_fFpHDjE3JU69bh6d8dksfpZFHcRrP5zV1xPYs2LE98pIzgnMlKljUXWSbKssolVkyVLEWZSabLVCdoTIk8zRjwuhQiZcgSlaIATIbk_Lc3DH3ZovPLld32XXi55JmAnLPAyQ9AomDh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740821740</pqid></control><display><type>article</type><title>SrxTi0.6Fe0.4O3−δ (x = 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Kaihui ; Chen, Huili ; Si-Dian, Li ; Shao, Zongping</creator><creatorcontrib>Wang, Kaihui ; Chen, Huili ; Si-Dian, Li ; Shao, Zongping</creatorcontrib><description>Ammonia is a promising carbon-free energy carrier. Ammonia is usually industrially synthesized via the Haber–Bosch method under high pressures and temperatures, which requires high energy consumption. In comparison, the electrocatalytic reduction of N2 is a green, eco-friendly, and pollution-free method for ammonia synthesis if the electricity is generated using a renewable source. Therefore, the development of highly efficient electrocatalysts for the N2 reduction reaction (NRR) would be significant. Herein, perovskites SrxTi0.6Fe0.4O3−δ (SxTF, x = 1 and 0.9) with tunable oxygen vacancies (OVs) were prepared and used as NRR electrodes for proton-conducting solid oxide electrolysis cells (PCECs). These PCECs were used to synthesize NH3 from N2 and H2. STF and S0.9TF showed maximum ammonia synthesis rates of 6.84 × 10−9 (±0.25 × 10−9) mol cm−2 s−1 and 4.09 × 10−9 (±0.80 × 10−9) mol cm−2 s−1, with corresponding Faraday efficiencies of 2.79% (±0.12%) and 2.01% (±0.09%) at 650 °C and 0.6 V. The enhanced NRR performance of S0.9TF was mainly attributed to the improved adsorption and activation of N2 by the abundant OVs, Ti3+ and the exsolved Fe active particles. This work offers a promising strategy for the design of materials for the electrochemical synthesis of NH3via PCECs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta01669a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Catalysts ; Chemical reduction ; Chemical synthesis ; Electrocatalysts ; Electrochemistry ; Electrolysis ; Electrolytic cells ; Energy consumption ; Free energy ; Perovskites ; Protons</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24813-24823</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Kaihui</creatorcontrib><creatorcontrib>Chen, Huili</creatorcontrib><creatorcontrib>Si-Dian, Li</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>SrxTi0.6Fe0.4O3−δ (x = 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ammonia is a promising carbon-free energy carrier. Ammonia is usually industrially synthesized via the Haber–Bosch method under high pressures and temperatures, which requires high energy consumption. In comparison, the electrocatalytic reduction of N2 is a green, eco-friendly, and pollution-free method for ammonia synthesis if the electricity is generated using a renewable source. Therefore, the development of highly efficient electrocatalysts for the N2 reduction reaction (NRR) would be significant. Herein, perovskites SrxTi0.6Fe0.4O3−δ (SxTF, x = 1 and 0.9) with tunable oxygen vacancies (OVs) were prepared and used as NRR electrodes for proton-conducting solid oxide electrolysis cells (PCECs). These PCECs were used to synthesize NH3 from N2 and H2. STF and S0.9TF showed maximum ammonia synthesis rates of 6.84 × 10−9 (±0.25 × 10−9) mol cm−2 s−1 and 4.09 × 10−9 (±0.80 × 10−9) mol cm−2 s−1, with corresponding Faraday efficiencies of 2.79% (±0.12%) and 2.01% (±0.09%) at 650 °C and 0.6 V. The enhanced NRR performance of S0.9TF was mainly attributed to the improved adsorption and activation of N2 by the abundant OVs, Ti3+ and the exsolved Fe active particles. This work offers a promising strategy for the design of materials for the electrochemical synthesis of NH3via PCECs.</description><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy consumption</subject><subject>Free energy</subject><subject>Perovskites</subject><subject>Protons</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9TsFKw0AUXETBUr34BQteWjDx7WazyR48SGhVKFSwnstm86IpabZmt9LePHr2W_wOP8IvcUFxDvNmYJg3hJwxiBkk6rLiXgOTUukDMuCQQpQJJQ__dZ4fk1PnVhCQA0ilBuTtod8tGojlFCEW8-T7_ePrk4529IqyGC4oxGpMjfa63TvvaG17qtdr2zWaun3nn9E1jr4Gt-mtt11kbFdtjW-6J-ps21TU7poKKbZofG9DSYgbbFtHR_fFpHDjE3JU69bh6d8dksfpZFHcRrP5zV1xPYs2LE98pIzgnMlKljUXWSbKssolVkyVLEWZSabLVCdoTIk8zRjwuhQiZcgSlaIATIbk_Lc3DH3ZovPLld32XXi55JmAnLPAyQ9AomDh</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Wang, Kaihui</creator><creator>Chen, Huili</creator><creator>Si-Dian, Li</creator><creator>Shao, Zongping</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20221129</creationdate><title>SrxTi0.6Fe0.4O3−δ (x = 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)</title><author>Wang, Kaihui ; Chen, Huili ; Si-Dian, Li ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-9c42216d6bf24774bbd86ed19b15e6761ab5a3eccbe257102fb4451e1395e40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy consumption</topic><topic>Free energy</topic><topic>Perovskites</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaihui</creatorcontrib><creatorcontrib>Chen, Huili</creatorcontrib><creatorcontrib>Si-Dian, Li</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaihui</au><au>Chen, Huili</au><au>Si-Dian, Li</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SrxTi0.6Fe0.4O3−δ (x = 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-11-29</date><risdate>2022</risdate><volume>10</volume><issue>46</issue><spage>24813</spage><epage>24823</epage><pages>24813-24823</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Ammonia is a promising carbon-free energy carrier. Ammonia is usually industrially synthesized via the Haber–Bosch method under high pressures and temperatures, which requires high energy consumption. In comparison, the electrocatalytic reduction of N2 is a green, eco-friendly, and pollution-free method for ammonia synthesis if the electricity is generated using a renewable source. Therefore, the development of highly efficient electrocatalysts for the N2 reduction reaction (NRR) would be significant. Herein, perovskites SrxTi0.6Fe0.4O3−δ (SxTF, x = 1 and 0.9) with tunable oxygen vacancies (OVs) were prepared and used as NRR electrodes for proton-conducting solid oxide electrolysis cells (PCECs). These PCECs were used to synthesize NH3 from N2 and H2. STF and S0.9TF showed maximum ammonia synthesis rates of 6.84 × 10−9 (±0.25 × 10−9) mol cm−2 s−1 and 4.09 × 10−9 (±0.80 × 10−9) mol cm−2 s−1, with corresponding Faraday efficiencies of 2.79% (±0.12%) and 2.01% (±0.09%) at 650 °C and 0.6 V. The enhanced NRR performance of S0.9TF was mainly attributed to the improved adsorption and activation of N2 by the abundant OVs, Ti3+ and the exsolved Fe active particles. This work offers a promising strategy for the design of materials for the electrochemical synthesis of NH3via PCECs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta01669a</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24813-24823 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2740821740 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ammonia Catalysts Chemical reduction Chemical synthesis Electrocatalysts Electrochemistry Electrolysis Electrolytic cells Energy consumption Free energy Perovskites Protons |
title | SrxTi0.6Fe0.4O3−δ (x = 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SrxTi0.6Fe0.4O3%E2%88%92%CE%B4%20(x%20=%201.0,%200.9)%20catalysts%20for%20ammonia%20synthesis%20via%20proton-conducting%20solid%20oxide%20electrolysis%20cells%20(PCECs)&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Kaihui&rft.date=2022-11-29&rft.volume=10&rft.issue=46&rft.spage=24813&rft.epage=24823&rft.pages=24813-24823&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta01669a&rft_dat=%3Cproquest%3E2740821740%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740821740&rft_id=info:pmid/&rfr_iscdi=true |