Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements
In northern peatlands, near‐saturated surface conditions promote valuable ecosystem services such as carbon storage and drinking water provision. Peat saturated hydraulic conductivity (Ksat) plays an important role in maintaining wet surface conditions by moderating drainage and evapotranspiration....
Gespeichert in:
Veröffentlicht in: | Water resources research 2022-11, Vol.58 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Water resources research |
container_volume | 58 |
creator | Morris, P. J. Davies, M. L. Baird, A. J. Balliston, N. Bourgault, M.‐A. Clymo, R. S. Fewster, R. E. Furukawa, A. K. Holden, J. Kessel, E. Ketcheson, S. J. Kløve, B. Larocque, M. Marttila, H. Menberu, M. W. Moore, P. A. Price, J. S. Ronkanen, A.‐K. Rosa, E. Strack, M. Surridge, B. W. J. Waddington, J. M. Whittington, P. Wilkinson, S. L. |
description | In northern peatlands, near‐saturated surface conditions promote valuable ecosystem services such as carbon storage and drinking water provision. Peat saturated hydraulic conductivity (Ksat) plays an important role in maintaining wet surface conditions by moderating drainage and evapotranspiration. Peat Ksat can exhibit intense spatial variability in three dimensions and can change rapidly in response to disturbance. The development of skillful predictive equations for peat Ksat and other hydraulic properties, akin to mineral soil pedotransfer functions, remains a subject of ongoing research. We report a meta‐analysis of 2,507 northern peat samples, from which we developed linear models that predict peat Ksat from other variables, including depth, dry bulk density, von Post score (degree of humification), and categorical information such as surface microform type and peatland trophic type (e.g., bog and fen). Peat Ksat decreases strongly with increasing depth, dry bulk density, and humification; and increases along the trophic gradient from bog to fen peat. Dry bulk density and humification are particularly important predictors and increase model skill greatly; our best model, which includes these variables, has a cross‐validated r2 of 0.75 and little bias. A second model that includes humification but omits dry bulk density, intended for rapid field estimations of Ksat, also performs well (cross‐validated r2 = 0.64). Two additional models that omit several predictors perform less well (cross‐validated r2 ∼ 0.5), and exhibit greater bias, but allow Ksat to be estimated from less comprehensive data. Our models allow improved estimation of peat Ksat from simpler, cheaper measurements.
Key Points
We report skillful statistical models to estimate saturated hydraulic conductivity in northern peats from simpler measurements
Peat dry bulk density and humification (von Post score) are particularly powerful predictors
Our models represent an improvement over existing pedotransfer functions for peat saturated hydraulic conductivity |
doi_str_mv | 10.1029/2022WR033181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740532647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740532647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3680-9f5d8d28c08a3d64679cbc48734f3af00af4ac062a6c94180697c2cfb234441e3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q8Orq5KP5OMpibaFaaZUelzSb4JZ2tyZZZf-9W-rBk6c5zPPOwIvQNYE7AlTfU6B0tQDGiCInaEA055nUkp2iAQBnGWFanqOLGDcAhI-EHKDl0qQ2mORKPOnKYNptZXHe1GVrU_VVpQ5XNX5pQvpwocavzqSIp7V3IfSJcWh2eH5Y4WdnYhvcztUpXqIzb7bRXf3OIXofP77lk2w2f5rmD7PMMKEg035UqpIqC8qwUnAhtV1briTjnhkPYDw3FgQ1wmpOFAgtLbV-TRnnnDg2RDfHu_vQfLYupmLTtKHuXxZUchgxKrjs1e1R2dDEGJwv9qHamdAVBIpDbcXf2nrOjvy72rruX1usFvmCCiqB_QAq7241</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740532647</pqid></control><display><type>article</type><title>Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Morris, P. J. ; Davies, M. L. ; Baird, A. J. ; Balliston, N. ; Bourgault, M.‐A. ; Clymo, R. S. ; Fewster, R. E. ; Furukawa, A. K. ; Holden, J. ; Kessel, E. ; Ketcheson, S. J. ; Kløve, B. ; Larocque, M. ; Marttila, H. ; Menberu, M. W. ; Moore, P. A. ; Price, J. S. ; Ronkanen, A.‐K. ; Rosa, E. ; Strack, M. ; Surridge, B. W. J. ; Waddington, J. M. ; Whittington, P. ; Wilkinson, S. L.</creator><creatorcontrib>Morris, P. J. ; Davies, M. L. ; Baird, A. J. ; Balliston, N. ; Bourgault, M.‐A. ; Clymo, R. S. ; Fewster, R. E. ; Furukawa, A. K. ; Holden, J. ; Kessel, E. ; Ketcheson, S. J. ; Kløve, B. ; Larocque, M. ; Marttila, H. ; Menberu, M. W. ; Moore, P. A. ; Price, J. S. ; Ronkanen, A.‐K. ; Rosa, E. ; Strack, M. ; Surridge, B. W. J. ; Waddington, J. M. ; Whittington, P. ; Wilkinson, S. L.</creatorcontrib><description>In northern peatlands, near‐saturated surface conditions promote valuable ecosystem services such as carbon storage and drinking water provision. Peat saturated hydraulic conductivity (Ksat) plays an important role in maintaining wet surface conditions by moderating drainage and evapotranspiration. Peat Ksat can exhibit intense spatial variability in three dimensions and can change rapidly in response to disturbance. The development of skillful predictive equations for peat Ksat and other hydraulic properties, akin to mineral soil pedotransfer functions, remains a subject of ongoing research. We report a meta‐analysis of 2,507 northern peat samples, from which we developed linear models that predict peat Ksat from other variables, including depth, dry bulk density, von Post score (degree of humification), and categorical information such as surface microform type and peatland trophic type (e.g., bog and fen). Peat Ksat decreases strongly with increasing depth, dry bulk density, and humification; and increases along the trophic gradient from bog to fen peat. Dry bulk density and humification are particularly important predictors and increase model skill greatly; our best model, which includes these variables, has a cross‐validated r2 of 0.75 and little bias. A second model that includes humification but omits dry bulk density, intended for rapid field estimations of Ksat, also performs well (cross‐validated r2 = 0.64). Two additional models that omit several predictors perform less well (cross‐validated r2 ∼ 0.5), and exhibit greater bias, but allow Ksat to be estimated from less comprehensive data. Our models allow improved estimation of peat Ksat from simpler, cheaper measurements.
Key Points
We report skillful statistical models to estimate saturated hydraulic conductivity in northern peats from simpler measurements
Peat dry bulk density and humification (von Post score) are particularly powerful predictors
Our models represent an improvement over existing pedotransfer functions for peat saturated hydraulic conductivity</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2022WR033181</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Bias ; Bogs ; Bulk density ; Carbon capture and storage ; Carbon sequestration ; Density ; Dimensions ; Drinking water ; dry bulk density ; Ecosystem services ; Evapotranspiration ; Fens ; Humification ; Hydraulic conductivity ; Hydraulic properties ; Hydraulics ; Ksat ; Modelling ; Peat ; Peatlands ; pedotransfer function ; Soil properties ; Spatial variability ; Spatial variations ; von Post</subject><ispartof>Water resources research, 2022-11, Vol.58 (11), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3680-9f5d8d28c08a3d64679cbc48734f3af00af4ac062a6c94180697c2cfb234441e3</citedby><cites>FETCH-LOGICAL-a3680-9f5d8d28c08a3d64679cbc48734f3af00af4ac062a6c94180697c2cfb234441e3</cites><orcidid>0000-0002-0317-7894 ; 0000-0003-1924-1528 ; 0000-0001-8198-3229 ; 0000-0003-2425-1739 ; 0000-0003-3137-6388 ; 0000-0002-1145-1478 ; 0000-0002-9744-2483 ; 0000-0002-1108-4831 ; 0000-0003-3210-6363 ; 0000-0002-7868-6167 ; 0000-0001-6883-7024 ; 0000-0001-9906-3535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022WR033181$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022WR033181$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Morris, P. J.</creatorcontrib><creatorcontrib>Davies, M. L.</creatorcontrib><creatorcontrib>Baird, A. J.</creatorcontrib><creatorcontrib>Balliston, N.</creatorcontrib><creatorcontrib>Bourgault, M.‐A.</creatorcontrib><creatorcontrib>Clymo, R. S.</creatorcontrib><creatorcontrib>Fewster, R. E.</creatorcontrib><creatorcontrib>Furukawa, A. K.</creatorcontrib><creatorcontrib>Holden, J.</creatorcontrib><creatorcontrib>Kessel, E.</creatorcontrib><creatorcontrib>Ketcheson, S. J.</creatorcontrib><creatorcontrib>Kløve, B.</creatorcontrib><creatorcontrib>Larocque, M.</creatorcontrib><creatorcontrib>Marttila, H.</creatorcontrib><creatorcontrib>Menberu, M. W.</creatorcontrib><creatorcontrib>Moore, P. A.</creatorcontrib><creatorcontrib>Price, J. S.</creatorcontrib><creatorcontrib>Ronkanen, A.‐K.</creatorcontrib><creatorcontrib>Rosa, E.</creatorcontrib><creatorcontrib>Strack, M.</creatorcontrib><creatorcontrib>Surridge, B. W. J.</creatorcontrib><creatorcontrib>Waddington, J. M.</creatorcontrib><creatorcontrib>Whittington, P.</creatorcontrib><creatorcontrib>Wilkinson, S. L.</creatorcontrib><title>Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements</title><title>Water resources research</title><description>In northern peatlands, near‐saturated surface conditions promote valuable ecosystem services such as carbon storage and drinking water provision. Peat saturated hydraulic conductivity (Ksat) plays an important role in maintaining wet surface conditions by moderating drainage and evapotranspiration. Peat Ksat can exhibit intense spatial variability in three dimensions and can change rapidly in response to disturbance. The development of skillful predictive equations for peat Ksat and other hydraulic properties, akin to mineral soil pedotransfer functions, remains a subject of ongoing research. We report a meta‐analysis of 2,507 northern peat samples, from which we developed linear models that predict peat Ksat from other variables, including depth, dry bulk density, von Post score (degree of humification), and categorical information such as surface microform type and peatland trophic type (e.g., bog and fen). Peat Ksat decreases strongly with increasing depth, dry bulk density, and humification; and increases along the trophic gradient from bog to fen peat. Dry bulk density and humification are particularly important predictors and increase model skill greatly; our best model, which includes these variables, has a cross‐validated r2 of 0.75 and little bias. A second model that includes humification but omits dry bulk density, intended for rapid field estimations of Ksat, also performs well (cross‐validated r2 = 0.64). Two additional models that omit several predictors perform less well (cross‐validated r2 ∼ 0.5), and exhibit greater bias, but allow Ksat to be estimated from less comprehensive data. Our models allow improved estimation of peat Ksat from simpler, cheaper measurements.
Key Points
We report skillful statistical models to estimate saturated hydraulic conductivity in northern peats from simpler measurements
Peat dry bulk density and humification (von Post score) are particularly powerful predictors
Our models represent an improvement over existing pedotransfer functions for peat saturated hydraulic conductivity</description><subject>Bias</subject><subject>Bogs</subject><subject>Bulk density</subject><subject>Carbon capture and storage</subject><subject>Carbon sequestration</subject><subject>Density</subject><subject>Dimensions</subject><subject>Drinking water</subject><subject>dry bulk density</subject><subject>Ecosystem services</subject><subject>Evapotranspiration</subject><subject>Fens</subject><subject>Humification</subject><subject>Hydraulic conductivity</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>Ksat</subject><subject>Modelling</subject><subject>Peat</subject><subject>Peatlands</subject><subject>pedotransfer function</subject><subject>Soil properties</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>von Post</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q8Orq5KP5OMpibaFaaZUelzSb4JZ2tyZZZf-9W-rBk6c5zPPOwIvQNYE7AlTfU6B0tQDGiCInaEA055nUkp2iAQBnGWFanqOLGDcAhI-EHKDl0qQ2mORKPOnKYNptZXHe1GVrU_VVpQ5XNX5pQvpwocavzqSIp7V3IfSJcWh2eH5Y4WdnYhvcztUpXqIzb7bRXf3OIXofP77lk2w2f5rmD7PMMKEg035UqpIqC8qwUnAhtV1briTjnhkPYDw3FgQ1wmpOFAgtLbV-TRnnnDg2RDfHu_vQfLYupmLTtKHuXxZUchgxKrjs1e1R2dDEGJwv9qHamdAVBIpDbcXf2nrOjvy72rruX1usFvmCCiqB_QAq7241</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Morris, P. J.</creator><creator>Davies, M. L.</creator><creator>Baird, A. J.</creator><creator>Balliston, N.</creator><creator>Bourgault, M.‐A.</creator><creator>Clymo, R. S.</creator><creator>Fewster, R. E.</creator><creator>Furukawa, A. K.</creator><creator>Holden, J.</creator><creator>Kessel, E.</creator><creator>Ketcheson, S. J.</creator><creator>Kløve, B.</creator><creator>Larocque, M.</creator><creator>Marttila, H.</creator><creator>Menberu, M. W.</creator><creator>Moore, P. A.</creator><creator>Price, J. S.</creator><creator>Ronkanen, A.‐K.</creator><creator>Rosa, E.</creator><creator>Strack, M.</creator><creator>Surridge, B. W. J.</creator><creator>Waddington, J. M.</creator><creator>Whittington, P.</creator><creator>Wilkinson, S. L.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0317-7894</orcidid><orcidid>https://orcid.org/0000-0003-1924-1528</orcidid><orcidid>https://orcid.org/0000-0001-8198-3229</orcidid><orcidid>https://orcid.org/0000-0003-2425-1739</orcidid><orcidid>https://orcid.org/0000-0003-3137-6388</orcidid><orcidid>https://orcid.org/0000-0002-1145-1478</orcidid><orcidid>https://orcid.org/0000-0002-9744-2483</orcidid><orcidid>https://orcid.org/0000-0002-1108-4831</orcidid><orcidid>https://orcid.org/0000-0003-3210-6363</orcidid><orcidid>https://orcid.org/0000-0002-7868-6167</orcidid><orcidid>https://orcid.org/0000-0001-6883-7024</orcidid><orcidid>https://orcid.org/0000-0001-9906-3535</orcidid></search><sort><creationdate>202211</creationdate><title>Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements</title><author>Morris, P. J. ; Davies, M. L. ; Baird, A. J. ; Balliston, N. ; Bourgault, M.‐A. ; Clymo, R. S. ; Fewster, R. E. ; Furukawa, A. K. ; Holden, J. ; Kessel, E. ; Ketcheson, S. J. ; Kløve, B. ; Larocque, M. ; Marttila, H. ; Menberu, M. W. ; Moore, P. A. ; Price, J. S. ; Ronkanen, A.‐K. ; Rosa, E. ; Strack, M. ; Surridge, B. W. J. ; Waddington, J. M. ; Whittington, P. ; Wilkinson, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3680-9f5d8d28c08a3d64679cbc48734f3af00af4ac062a6c94180697c2cfb234441e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bias</topic><topic>Bogs</topic><topic>Bulk density</topic><topic>Carbon capture and storage</topic><topic>Carbon sequestration</topic><topic>Density</topic><topic>Dimensions</topic><topic>Drinking water</topic><topic>dry bulk density</topic><topic>Ecosystem services</topic><topic>Evapotranspiration</topic><topic>Fens</topic><topic>Humification</topic><topic>Hydraulic conductivity</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>Ksat</topic><topic>Modelling</topic><topic>Peat</topic><topic>Peatlands</topic><topic>pedotransfer function</topic><topic>Soil properties</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>von Post</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, P. J.</creatorcontrib><creatorcontrib>Davies, M. L.</creatorcontrib><creatorcontrib>Baird, A. J.</creatorcontrib><creatorcontrib>Balliston, N.</creatorcontrib><creatorcontrib>Bourgault, M.‐A.</creatorcontrib><creatorcontrib>Clymo, R. S.</creatorcontrib><creatorcontrib>Fewster, R. E.</creatorcontrib><creatorcontrib>Furukawa, A. K.</creatorcontrib><creatorcontrib>Holden, J.</creatorcontrib><creatorcontrib>Kessel, E.</creatorcontrib><creatorcontrib>Ketcheson, S. J.</creatorcontrib><creatorcontrib>Kløve, B.</creatorcontrib><creatorcontrib>Larocque, M.</creatorcontrib><creatorcontrib>Marttila, H.</creatorcontrib><creatorcontrib>Menberu, M. W.</creatorcontrib><creatorcontrib>Moore, P. A.</creatorcontrib><creatorcontrib>Price, J. S.</creatorcontrib><creatorcontrib>Ronkanen, A.‐K.</creatorcontrib><creatorcontrib>Rosa, E.</creatorcontrib><creatorcontrib>Strack, M.</creatorcontrib><creatorcontrib>Surridge, B. W. J.</creatorcontrib><creatorcontrib>Waddington, J. M.</creatorcontrib><creatorcontrib>Whittington, P.</creatorcontrib><creatorcontrib>Wilkinson, S. L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, P. J.</au><au>Davies, M. L.</au><au>Baird, A. J.</au><au>Balliston, N.</au><au>Bourgault, M.‐A.</au><au>Clymo, R. S.</au><au>Fewster, R. E.</au><au>Furukawa, A. K.</au><au>Holden, J.</au><au>Kessel, E.</au><au>Ketcheson, S. J.</au><au>Kløve, B.</au><au>Larocque, M.</au><au>Marttila, H.</au><au>Menberu, M. W.</au><au>Moore, P. A.</au><au>Price, J. S.</au><au>Ronkanen, A.‐K.</au><au>Rosa, E.</au><au>Strack, M.</au><au>Surridge, B. W. J.</au><au>Waddington, J. M.</au><au>Whittington, P.</au><au>Wilkinson, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements</atitle><jtitle>Water resources research</jtitle><date>2022-11</date><risdate>2022</risdate><volume>58</volume><issue>11</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>In northern peatlands, near‐saturated surface conditions promote valuable ecosystem services such as carbon storage and drinking water provision. Peat saturated hydraulic conductivity (Ksat) plays an important role in maintaining wet surface conditions by moderating drainage and evapotranspiration. Peat Ksat can exhibit intense spatial variability in three dimensions and can change rapidly in response to disturbance. The development of skillful predictive equations for peat Ksat and other hydraulic properties, akin to mineral soil pedotransfer functions, remains a subject of ongoing research. We report a meta‐analysis of 2,507 northern peat samples, from which we developed linear models that predict peat Ksat from other variables, including depth, dry bulk density, von Post score (degree of humification), and categorical information such as surface microform type and peatland trophic type (e.g., bog and fen). Peat Ksat decreases strongly with increasing depth, dry bulk density, and humification; and increases along the trophic gradient from bog to fen peat. Dry bulk density and humification are particularly important predictors and increase model skill greatly; our best model, which includes these variables, has a cross‐validated r2 of 0.75 and little bias. A second model that includes humification but omits dry bulk density, intended for rapid field estimations of Ksat, also performs well (cross‐validated r2 = 0.64). Two additional models that omit several predictors perform less well (cross‐validated r2 ∼ 0.5), and exhibit greater bias, but allow Ksat to be estimated from less comprehensive data. Our models allow improved estimation of peat Ksat from simpler, cheaper measurements.
Key Points
We report skillful statistical models to estimate saturated hydraulic conductivity in northern peats from simpler measurements
Peat dry bulk density and humification (von Post score) are particularly powerful predictors
Our models represent an improvement over existing pedotransfer functions for peat saturated hydraulic conductivity</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2022WR033181</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0317-7894</orcidid><orcidid>https://orcid.org/0000-0003-1924-1528</orcidid><orcidid>https://orcid.org/0000-0001-8198-3229</orcidid><orcidid>https://orcid.org/0000-0003-2425-1739</orcidid><orcidid>https://orcid.org/0000-0003-3137-6388</orcidid><orcidid>https://orcid.org/0000-0002-1145-1478</orcidid><orcidid>https://orcid.org/0000-0002-9744-2483</orcidid><orcidid>https://orcid.org/0000-0002-1108-4831</orcidid><orcidid>https://orcid.org/0000-0003-3210-6363</orcidid><orcidid>https://orcid.org/0000-0002-7868-6167</orcidid><orcidid>https://orcid.org/0000-0001-6883-7024</orcidid><orcidid>https://orcid.org/0000-0001-9906-3535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2022-11, Vol.58 (11), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2740532647 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Bias Bogs Bulk density Carbon capture and storage Carbon sequestration Density Dimensions Drinking water dry bulk density Ecosystem services Evapotranspiration Fens Humification Hydraulic conductivity Hydraulic properties Hydraulics Ksat Modelling Peat Peatlands pedotransfer function Soil properties Spatial variability Spatial variations von Post |
title | Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturated%20Hydraulic%20Conductivity%20in%20Northern%20Peats%20Inferred%20From%20Other%20Measurements&rft.jtitle=Water%20resources%20research&rft.au=Morris,%20P.%20J.&rft.date=2022-11&rft.volume=58&rft.issue=11&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2022WR033181&rft_dat=%3Cproquest_cross%3E2740532647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740532647&rft_id=info:pmid/&rfr_iscdi=true |