Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions

Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2022-10, Vol.116 (8), p.580-585
Hauptverfasser: Akopyan, L. A., Lakhmanskaya, O., Zarutskiy, S. Yu, Korolev, N. D., Guseva, O., Lakhmanskiy, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 8
container_start_page 580
container_title JETP letters
container_volume 116
creator Akopyan, L. A.
Lakhmanskaya, O.
Zarutskiy, S. Yu
Korolev, N. D.
Guseva, O.
Lakhmanskiy, K.
description Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.
doi_str_mv 10.1134/S0021364022601956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740274208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740274208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9V70yxJH2XoNhhT2XwuWZvMjrapSfvgvzdlgg_i04XznXMuHEJuEe4RU_6wBWCYCg6MCcBsJs7IBCGDRHAlz8lkxMnIL8lVCEcARJXKCdlshsb4qtA13VbNUOu-ci11lvYfhr4ab51vdFuYUdpW7aE29G3YVz1d6N4EGjHded11pqQr14ZrcmF1HczNz52S9-en3XyZrF8Wq_njOimYyvrEZgwVQGpn1ipVcpGhUNoUpeZCcx0x7AVIKGecWV4ywRlncp8xWSKC1umU3J16O-8-BxP6_OgG38aXOZNxBMkZqOjCk6vwLgRvbN75qtH-K0fIx9nyP7PFDDtlQvS2B-N_m_8PfQNi_Wzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740274208</pqid></control><display><type>article</type><title>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akopyan, L. A. ; Lakhmanskaya, O. ; Zarutskiy, S. Yu ; Korolev, N. D. ; Guseva, O. ; Lakhmanskiy, K.</creator><creatorcontrib>Akopyan, L. A. ; Lakhmanskaya, O. ; Zarutskiy, S. Yu ; Korolev, N. D. ; Guseva, O. ; Lakhmanskiy, K.</creatorcontrib><description>Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364022601956</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Errors ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Phonons ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum entanglement ; Quantum Informatics ; Quantum Information Technology ; Qubits (quantum computing) ; Rabi frequency ; Schrodinger equation ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2022-10, Vol.116 (8), p.580-585</ispartof><rights>The Author(s) 2022. ISSN 0021-3640, JETP Letters, 2022, Vol. 116, No. 8, pp. 580–585. © The Author(s), 2022. This article is an open access publication. ISSN 0021-3640, JETP Letters, 2022. © The Author(s), 2022. This article is an open access publication.</rights><rights>The Author(s) 2022. ISSN 0021-3640, JETP Letters, 2022, Vol. 116, No. 8, pp. 580–585. © The Author(s), 2022. This article is an open access publication. ISSN 0021-3640, JETP Letters, 2022. © The Author(s), 2022. This article is an open access publication. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</citedby><cites>FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364022601956$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364022601956$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Akopyan, L. A.</creatorcontrib><creatorcontrib>Lakhmanskaya, O.</creatorcontrib><creatorcontrib>Zarutskiy, S. Yu</creatorcontrib><creatorcontrib>Korolev, N. D.</creatorcontrib><creatorcontrib>Guseva, O.</creatorcontrib><creatorcontrib>Lakhmanskiy, K.</creatorcontrib><title>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Errors</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Quantum Informatics</subject><subject>Quantum Information Technology</subject><subject>Qubits (quantum computing)</subject><subject>Rabi frequency</subject><subject>Schrodinger equation</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9V70yxJH2XoNhhT2XwuWZvMjrapSfvgvzdlgg_i04XznXMuHEJuEe4RU_6wBWCYCg6MCcBsJs7IBCGDRHAlz8lkxMnIL8lVCEcARJXKCdlshsb4qtA13VbNUOu-ci11lvYfhr4ab51vdFuYUdpW7aE29G3YVz1d6N4EGjHded11pqQr14ZrcmF1HczNz52S9-en3XyZrF8Wq_njOimYyvrEZgwVQGpn1ipVcpGhUNoUpeZCcx0x7AVIKGecWV4ywRlncp8xWSKC1umU3J16O-8-BxP6_OgG38aXOZNxBMkZqOjCk6vwLgRvbN75qtH-K0fIx9nyP7PFDDtlQvS2B-N_m_8PfQNi_Wzb</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Akopyan, L. A.</creator><creator>Lakhmanskaya, O.</creator><creator>Zarutskiy, S. Yu</creator><creator>Korolev, N. D.</creator><creator>Guseva, O.</creator><creator>Lakhmanskiy, K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</title><author>Akopyan, L. A. ; Lakhmanskaya, O. ; Zarutskiy, S. Yu ; Korolev, N. D. ; Guseva, O. ; Lakhmanskiy, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Errors</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Quantum Informatics</topic><topic>Quantum Information Technology</topic><topic>Qubits (quantum computing)</topic><topic>Rabi frequency</topic><topic>Schrodinger equation</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akopyan, L. A.</creatorcontrib><creatorcontrib>Lakhmanskaya, O.</creatorcontrib><creatorcontrib>Zarutskiy, S. Yu</creatorcontrib><creatorcontrib>Korolev, N. D.</creatorcontrib><creatorcontrib>Guseva, O.</creatorcontrib><creatorcontrib>Lakhmanskiy, K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akopyan, L. A.</au><au>Lakhmanskaya, O.</au><au>Zarutskiy, S. Yu</au><au>Korolev, N. D.</au><au>Guseva, O.</au><au>Lakhmanskiy, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>116</volume><issue>8</issue><spage>580</spage><epage>585</epage><pages>580-585</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364022601956</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2022-10, Vol.116 (8), p.580-585
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2740274208
source SpringerLink Journals - AutoHoldings
subjects Atomic
Biological and Medical Physics
Biophysics
Errors
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Phonons
Physics
Physics and Astronomy
Quantum computers
Quantum entanglement
Quantum Informatics
Quantum Information Technology
Qubits (quantum computing)
Rabi frequency
Schrodinger equation
Solid State Physics
Spintronics
title Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20the%20Performance%20of%20Single%20Qubit%20Gates%20for%20Trapped%20Ions&rft.jtitle=JETP%20letters&rft.au=Akopyan,%20L.%20A.&rft.date=2022-10-01&rft.volume=116&rft.issue=8&rft.spage=580&rft.epage=585&rft.pages=580-585&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364022601956&rft_dat=%3Cproquest_cross%3E2740274208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740274208&rft_id=info:pmid/&rfr_iscdi=true