Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions
Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze...
Gespeichert in:
Veröffentlicht in: | JETP letters 2022-10, Vol.116 (8), p.580-585 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 8 |
container_start_page | 580 |
container_title | JETP letters |
container_volume | 116 |
creator | Akopyan, L. A. Lakhmanskaya, O. Zarutskiy, S. Yu Korolev, N. D. Guseva, O. Lakhmanskiy, K. |
description | Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions. |
doi_str_mv | 10.1134/S0021364022601956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740274208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740274208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9V70yxJH2XoNhhT2XwuWZvMjrapSfvgvzdlgg_i04XznXMuHEJuEe4RU_6wBWCYCg6MCcBsJs7IBCGDRHAlz8lkxMnIL8lVCEcARJXKCdlshsb4qtA13VbNUOu-ci11lvYfhr4ab51vdFuYUdpW7aE29G3YVz1d6N4EGjHded11pqQr14ZrcmF1HczNz52S9-en3XyZrF8Wq_njOimYyvrEZgwVQGpn1ipVcpGhUNoUpeZCcx0x7AVIKGecWV4ywRlncp8xWSKC1umU3J16O-8-BxP6_OgG38aXOZNxBMkZqOjCk6vwLgRvbN75qtH-K0fIx9nyP7PFDDtlQvS2B-N_m_8PfQNi_Wzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740274208</pqid></control><display><type>article</type><title>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akopyan, L. A. ; Lakhmanskaya, O. ; Zarutskiy, S. Yu ; Korolev, N. D. ; Guseva, O. ; Lakhmanskiy, K.</creator><creatorcontrib>Akopyan, L. A. ; Lakhmanskaya, O. ; Zarutskiy, S. Yu ; Korolev, N. D. ; Guseva, O. ; Lakhmanskiy, K.</creatorcontrib><description>Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364022601956</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Errors ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Phonons ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum entanglement ; Quantum Informatics ; Quantum Information Technology ; Qubits (quantum computing) ; Rabi frequency ; Schrodinger equation ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2022-10, Vol.116 (8), p.580-585</ispartof><rights>The Author(s) 2022. ISSN 0021-3640, JETP Letters, 2022, Vol. 116, No. 8, pp. 580–585. © The Author(s), 2022. This article is an open access publication. ISSN 0021-3640, JETP Letters, 2022. © The Author(s), 2022. This article is an open access publication.</rights><rights>The Author(s) 2022. ISSN 0021-3640, JETP Letters, 2022, Vol. 116, No. 8, pp. 580–585. © The Author(s), 2022. This article is an open access publication. ISSN 0021-3640, JETP Letters, 2022. © The Author(s), 2022. This article is an open access publication. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</citedby><cites>FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364022601956$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364022601956$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Akopyan, L. A.</creatorcontrib><creatorcontrib>Lakhmanskaya, O.</creatorcontrib><creatorcontrib>Zarutskiy, S. Yu</creatorcontrib><creatorcontrib>Korolev, N. D.</creatorcontrib><creatorcontrib>Guseva, O.</creatorcontrib><creatorcontrib>Lakhmanskiy, K.</creatorcontrib><title>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Errors</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Quantum Informatics</subject><subject>Quantum Information Technology</subject><subject>Qubits (quantum computing)</subject><subject>Rabi frequency</subject><subject>Schrodinger equation</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9V70yxJH2XoNhhT2XwuWZvMjrapSfvgvzdlgg_i04XznXMuHEJuEe4RU_6wBWCYCg6MCcBsJs7IBCGDRHAlz8lkxMnIL8lVCEcARJXKCdlshsb4qtA13VbNUOu-ci11lvYfhr4ab51vdFuYUdpW7aE29G3YVz1d6N4EGjHded11pqQr14ZrcmF1HczNz52S9-en3XyZrF8Wq_njOimYyvrEZgwVQGpn1ipVcpGhUNoUpeZCcx0x7AVIKGecWV4ywRlncp8xWSKC1umU3J16O-8-BxP6_OgG38aXOZNxBMkZqOjCk6vwLgRvbN75qtH-K0fIx9nyP7PFDDtlQvS2B-N_m_8PfQNi_Wzb</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Akopyan, L. A.</creator><creator>Lakhmanskaya, O.</creator><creator>Zarutskiy, S. Yu</creator><creator>Korolev, N. D.</creator><creator>Guseva, O.</creator><creator>Lakhmanskiy, K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</title><author>Akopyan, L. A. ; Lakhmanskaya, O. ; Zarutskiy, S. Yu ; Korolev, N. D. ; Guseva, O. ; Lakhmanskiy, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f9218003f5ff88d469168aecda46a4af920b6070d542f4d2642427b927d110aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Errors</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Quantum Informatics</topic><topic>Quantum Information Technology</topic><topic>Qubits (quantum computing)</topic><topic>Rabi frequency</topic><topic>Schrodinger equation</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akopyan, L. A.</creatorcontrib><creatorcontrib>Lakhmanskaya, O.</creatorcontrib><creatorcontrib>Zarutskiy, S. Yu</creatorcontrib><creatorcontrib>Korolev, N. D.</creatorcontrib><creatorcontrib>Guseva, O.</creatorcontrib><creatorcontrib>Lakhmanskiy, K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akopyan, L. A.</au><au>Lakhmanskaya, O.</au><au>Zarutskiy, S. Yu</au><au>Korolev, N. D.</au><au>Guseva, O.</au><au>Lakhmanskiy, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>116</volume><issue>8</issue><spage>580</spage><epage>585</epage><pages>580-585</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>Finite gate errors limit performance of modern quantum computers. In this work, we study single qubit gate fidelities for trapped ions. For this we have numerically solved Schrödinger equation using full Hamiltonian of the system for one, two, three and four ions. This approach allows us to analyze gate errors beyond the LambDicke approximation and to take into account not only a finite occupation of the phonon modes, but also the effects related to the ion–phonon entanglement. As a result, we show how infidelity of the global single qubit gates depend on the initial phonon mode occupations, the Lamb–Dicke parameter, Rabi frequency and the number of ions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364022601956</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2022-10, Vol.116 (8), p.580-585 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_proquest_journals_2740274208 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic Biological and Medical Physics Biophysics Errors Molecular Optical and Plasma Physics Particle and Nuclear Physics Phonons Physics Physics and Astronomy Quantum computers Quantum entanglement Quantum Informatics Quantum Information Technology Qubits (quantum computing) Rabi frequency Schrodinger equation Solid State Physics Spintronics |
title | Numerical Simulation of the Performance of Single Qubit Gates for Trapped Ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20the%20Performance%20of%20Single%20Qubit%20Gates%20for%20Trapped%20Ions&rft.jtitle=JETP%20letters&rft.au=Akopyan,%20L.%20A.&rft.date=2022-10-01&rft.volume=116&rft.issue=8&rft.spage=580&rft.epage=585&rft.pages=580-585&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364022601956&rft_dat=%3Cproquest_cross%3E2740274208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740274208&rft_id=info:pmid/&rfr_iscdi=true |