Impact of size, structure, and active cooling on the design and control of an omni-directional magnetic field generator: experiments and modeling
Omni-directional magnetic field generators (or Omnimagnets) are devices with several potential applications, such as capsule endoscope and magnetic guidance of a cochlear implant. An Omnimagnet heats due to the Joule effect and the resulting excessive temperatures may cause device failure. Thermal a...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2022-12, Vol.147 (23), p.13573-13583 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13583 |
---|---|
container_issue | 23 |
container_start_page | 13573 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 147 |
creator | Esmailie, Fateme Cavilla, Matthew S. Abbott, Jake J. Ameel, Tim A. |
description | Omni-directional magnetic field generators (or Omnimagnets) are devices with several potential applications, such as capsule endoscope and magnetic guidance of a cochlear implant. An Omnimagnet heats due to the Joule effect and the resulting excessive temperatures may cause device failure. Thermal analysis of an Omnimagnet can provide operational limits to prevent device failure due to excessive heating; however, as the device is still new, the thermal performance of the Omnimagnet has not yet been completely studied. The thermal behaviour of two Omnimagnets with some structural differences are numerically and experimentally studied in this work. A lumped-capacitance model is validated with experimental results showing the model Normal Root Mean Square Error for both Omnimagnets to be less than 12
%
. Results show that increasing the size of the Omnimagnet by about 16
%
, slows the rate of temperature increase within the Omnimagnet by 44
%
. In addition, a constant frame temperature heat sink at 0
∘
C decreases the steady-state temperature of the outer solenoid by approximately 29
%
when the outer solenoid is powered at 10 A. |
doi_str_mv | 10.1007/s10973-022-11492-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2740174487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727954185</galeid><sourcerecordid>A727954185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8fa6bd1d7a190e65a4d54a54f71808fc9467a8f82166188235ecd85066d91aa3</originalsourceid><addsrcrecordid>eNp9kd9qFDEUxgexYG19Aa8CXglOTTL5N96VUnWhILS9DzE5GVNmkjXJSPUtfGOzu0JZEMlFDsnv-05yvq57TfAFwVi-LwSPcugxpT0hbKQ9e9adEq5UT0cqnrd6aLUgHL_oXpbygDEeR0xOu9-bZWtsRcmjEn7BO1RqXm1dcytNdKjdhR-AbEpziBNKEdVvgByUMMU9YFOsOc07AxNRWmLoXcjQZCmaGS1milCDRT7A7NAEEbKpKX9A8LiFHBaIteyNluRg1-O8O_FmLvDq737W3X-8vr_63N98-bS5urzp7SBJ7ZU34qsjThoyYhDcMMeZ4cxLorDydmRCGuUVJUIQpejAwTrFsRBuJMYMZ92bg-02p-8rlKof0prbk4umkmEiGVPyiZrMDDpEn2o2dgnF6ktJ5cgZUbxRF_-g2nKwhDYg8KGdHwneHgl2Q4THOpm1FL25uz1m6YG1OZWSwettG5vJPzXBehe-PoSvW_h6H75mTTQcRKXBcYL89Lv_qP4ArtyxSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740174487</pqid></control><display><type>article</type><title>Impact of size, structure, and active cooling on the design and control of an omni-directional magnetic field generator: experiments and modeling</title><source>Springer Nature - Complete Springer Journals</source><creator>Esmailie, Fateme ; Cavilla, Matthew S. ; Abbott, Jake J. ; Ameel, Tim A.</creator><creatorcontrib>Esmailie, Fateme ; Cavilla, Matthew S. ; Abbott, Jake J. ; Ameel, Tim A.</creatorcontrib><description>Omni-directional magnetic field generators (or Omnimagnets) are devices with several potential applications, such as capsule endoscope and magnetic guidance of a cochlear implant. An Omnimagnet heats due to the Joule effect and the resulting excessive temperatures may cause device failure. Thermal analysis of an Omnimagnet can provide operational limits to prevent device failure due to excessive heating; however, as the device is still new, the thermal performance of the Omnimagnet has not yet been completely studied. The thermal behaviour of two Omnimagnets with some structural differences are numerically and experimentally studied in this work. A lumped-capacitance model is validated with experimental results showing the model Normal Root Mean Square Error for both Omnimagnets to be less than 12
%
. Results show that increasing the size of the Omnimagnet by about 16
%
, slows the rate of temperature increase within the Omnimagnet by 44
%
. In addition, a constant frame temperature heat sink at 0
∘
C decreases the steady-state temperature of the outer solenoid by approximately 29
%
when the outer solenoid is powered at 10 A.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-022-11492-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Cochlear implants ; Endoscopes ; Failure analysis ; Heat sinks ; Implants, Artificial ; Inorganic Chemistry ; Lumped parameter systems ; Magnetic fields ; Measurement Science and Instrumentation ; Parametric statistics ; Physical Chemistry ; Polymer Sciences ; Prosthesis ; Solenoids ; Temperature ; Thermal analysis ; Thermodynamic properties</subject><ispartof>Journal of thermal analysis and calorimetry, 2022-12, Vol.147 (23), p.13573-13583</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-8fa6bd1d7a190e65a4d54a54f71808fc9467a8f82166188235ecd85066d91aa3</cites><orcidid>0000-0002-2065-607X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-022-11492-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-022-11492-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Esmailie, Fateme</creatorcontrib><creatorcontrib>Cavilla, Matthew S.</creatorcontrib><creatorcontrib>Abbott, Jake J.</creatorcontrib><creatorcontrib>Ameel, Tim A.</creatorcontrib><title>Impact of size, structure, and active cooling on the design and control of an omni-directional magnetic field generator: experiments and modeling</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Omni-directional magnetic field generators (or Omnimagnets) are devices with several potential applications, such as capsule endoscope and magnetic guidance of a cochlear implant. An Omnimagnet heats due to the Joule effect and the resulting excessive temperatures may cause device failure. Thermal analysis of an Omnimagnet can provide operational limits to prevent device failure due to excessive heating; however, as the device is still new, the thermal performance of the Omnimagnet has not yet been completely studied. The thermal behaviour of two Omnimagnets with some structural differences are numerically and experimentally studied in this work. A lumped-capacitance model is validated with experimental results showing the model Normal Root Mean Square Error for both Omnimagnets to be less than 12
%
. Results show that increasing the size of the Omnimagnet by about 16
%
, slows the rate of temperature increase within the Omnimagnet by 44
%
. In addition, a constant frame temperature heat sink at 0
∘
C decreases the steady-state temperature of the outer solenoid by approximately 29
%
when the outer solenoid is powered at 10 A.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cochlear implants</subject><subject>Endoscopes</subject><subject>Failure analysis</subject><subject>Heat sinks</subject><subject>Implants, Artificial</subject><subject>Inorganic Chemistry</subject><subject>Lumped parameter systems</subject><subject>Magnetic fields</subject><subject>Measurement Science and Instrumentation</subject><subject>Parametric statistics</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Prosthesis</subject><subject>Solenoids</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermodynamic properties</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kd9qFDEUxgexYG19Aa8CXglOTTL5N96VUnWhILS9DzE5GVNmkjXJSPUtfGOzu0JZEMlFDsnv-05yvq57TfAFwVi-LwSPcugxpT0hbKQ9e9adEq5UT0cqnrd6aLUgHL_oXpbygDEeR0xOu9-bZWtsRcmjEn7BO1RqXm1dcytNdKjdhR-AbEpziBNKEdVvgByUMMU9YFOsOc07AxNRWmLoXcjQZCmaGS1milCDRT7A7NAEEbKpKX9A8LiFHBaIteyNluRg1-O8O_FmLvDq737W3X-8vr_63N98-bS5urzp7SBJ7ZU34qsjThoyYhDcMMeZ4cxLorDydmRCGuUVJUIQpejAwTrFsRBuJMYMZ92bg-02p-8rlKof0prbk4umkmEiGVPyiZrMDDpEn2o2dgnF6ktJ5cgZUbxRF_-g2nKwhDYg8KGdHwneHgl2Q4THOpm1FL25uz1m6YG1OZWSwettG5vJPzXBehe-PoSvW_h6H75mTTQcRKXBcYL89Lv_qP4ArtyxSQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Esmailie, Fateme</creator><creator>Cavilla, Matthew S.</creator><creator>Abbott, Jake J.</creator><creator>Ameel, Tim A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-2065-607X</orcidid></search><sort><creationdate>20221201</creationdate><title>Impact of size, structure, and active cooling on the design and control of an omni-directional magnetic field generator: experiments and modeling</title><author>Esmailie, Fateme ; Cavilla, Matthew S. ; Abbott, Jake J. ; Ameel, Tim A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8fa6bd1d7a190e65a4d54a54f71808fc9467a8f82166188235ecd85066d91aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cochlear implants</topic><topic>Endoscopes</topic><topic>Failure analysis</topic><topic>Heat sinks</topic><topic>Implants, Artificial</topic><topic>Inorganic Chemistry</topic><topic>Lumped parameter systems</topic><topic>Magnetic fields</topic><topic>Measurement Science and Instrumentation</topic><topic>Parametric statistics</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Prosthesis</topic><topic>Solenoids</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmailie, Fateme</creatorcontrib><creatorcontrib>Cavilla, Matthew S.</creatorcontrib><creatorcontrib>Abbott, Jake J.</creatorcontrib><creatorcontrib>Ameel, Tim A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmailie, Fateme</au><au>Cavilla, Matthew S.</au><au>Abbott, Jake J.</au><au>Ameel, Tim A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of size, structure, and active cooling on the design and control of an omni-directional magnetic field generator: experiments and modeling</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>147</volume><issue>23</issue><spage>13573</spage><epage>13583</epage><pages>13573-13583</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Omni-directional magnetic field generators (or Omnimagnets) are devices with several potential applications, such as capsule endoscope and magnetic guidance of a cochlear implant. An Omnimagnet heats due to the Joule effect and the resulting excessive temperatures may cause device failure. Thermal analysis of an Omnimagnet can provide operational limits to prevent device failure due to excessive heating; however, as the device is still new, the thermal performance of the Omnimagnet has not yet been completely studied. The thermal behaviour of two Omnimagnets with some structural differences are numerically and experimentally studied in this work. A lumped-capacitance model is validated with experimental results showing the model Normal Root Mean Square Error for both Omnimagnets to be less than 12
%
. Results show that increasing the size of the Omnimagnet by about 16
%
, slows the rate of temperature increase within the Omnimagnet by 44
%
. In addition, a constant frame temperature heat sink at 0
∘
C decreases the steady-state temperature of the outer solenoid by approximately 29
%
when the outer solenoid is powered at 10 A.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-022-11492-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2065-607X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2022-12, Vol.147 (23), p.13573-13583 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2740174487 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Analytical Chemistry Chemistry Chemistry and Materials Science Cochlear implants Endoscopes Failure analysis Heat sinks Implants, Artificial Inorganic Chemistry Lumped parameter systems Magnetic fields Measurement Science and Instrumentation Parametric statistics Physical Chemistry Polymer Sciences Prosthesis Solenoids Temperature Thermal analysis Thermodynamic properties |
title | Impact of size, structure, and active cooling on the design and control of an omni-directional magnetic field generator: experiments and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20size,%20structure,%20and%20active%20cooling%20on%20the%20design%20and%20control%20of%20an%20omni-directional%20magnetic%20field%20generator:%20experiments%20and%20modeling&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Esmailie,%20Fateme&rft.date=2022-12-01&rft.volume=147&rft.issue=23&rft.spage=13573&rft.epage=13583&rft.pages=13573-13583&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-022-11492-4&rft_dat=%3Cgale_proqu%3EA727954185%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740174487&rft_id=info:pmid/&rft_galeid=A727954185&rfr_iscdi=true |