GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Chao Serrano, Ana Pan, Xingang Chen, Bin Seidel, Hans-Peter Theobalt, Christian Myszkowski, Karol Leimkuehler, Thomas |
description | Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2739576589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739576589</sourcerecordid><originalsourceid>FETCH-proquest_journals_27395765893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcM_JL3d39LNSCM0rLi1ILSrLLE5NUfBJTSzKy8xLV8hPU_BwCVLwzE1MTy1WSCvKz1XwQfAz8xRKMlIVwjNzUngYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I3NjS1NzM1MLSmDhVAFJyOio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739576589</pqid></control><display><type>article</type><title>GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild</title><source>Free E- Journals</source><creator>Wang, Chao ; Serrano, Ana ; Pan, Xingang ; Chen, Bin ; Seidel, Hans-Peter ; Theobalt, Christian ; Myszkowski, Karol ; Leimkuehler, Thomas</creator><creatorcontrib>Wang, Chao ; Serrano, Ana ; Pan, Xingang ; Chen, Bin ; Seidel, Hans-Peter ; Theobalt, Christian ; Myszkowski, Karol ; Leimkuehler, Thomas</creatorcontrib><description>Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Dynamic range ; Exposure ; Generative adversarial networks ; Response functions ; Supervised learning ; Unsupervised learning ; Visual observation</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Serrano, Ana</creatorcontrib><creatorcontrib>Pan, Xingang</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Seidel, Hans-Peter</creatorcontrib><creatorcontrib>Theobalt, Christian</creatorcontrib><creatorcontrib>Myszkowski, Karol</creatorcontrib><creatorcontrib>Leimkuehler, Thomas</creatorcontrib><title>GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild</title><title>arXiv.org</title><description>Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.</description><subject>Cameras</subject><subject>Dynamic range</subject><subject>Exposure</subject><subject>Generative adversarial networks</subject><subject>Response functions</subject><subject>Supervised learning</subject><subject>Unsupervised learning</subject><subject>Visual observation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcM_JL3d39LNSCM0rLi1ILSrLLE5NUfBJTSzKy8xLV8hPU_BwCVLwzE1MTy1WSCvKz1XwQfAz8xRKMlIVwjNzUngYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I3NjS1NzM1MLSmDhVAFJyOio</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Wang, Chao</creator><creator>Serrano, Ana</creator><creator>Pan, Xingang</creator><creator>Chen, Bin</creator><creator>Seidel, Hans-Peter</creator><creator>Theobalt, Christian</creator><creator>Myszkowski, Karol</creator><creator>Leimkuehler, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221123</creationdate><title>GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild</title><author>Wang, Chao ; Serrano, Ana ; Pan, Xingang ; Chen, Bin ; Seidel, Hans-Peter ; Theobalt, Christian ; Myszkowski, Karol ; Leimkuehler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27395765893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cameras</topic><topic>Dynamic range</topic><topic>Exposure</topic><topic>Generative adversarial networks</topic><topic>Response functions</topic><topic>Supervised learning</topic><topic>Unsupervised learning</topic><topic>Visual observation</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Serrano, Ana</creatorcontrib><creatorcontrib>Pan, Xingang</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Seidel, Hans-Peter</creatorcontrib><creatorcontrib>Theobalt, Christian</creatorcontrib><creatorcontrib>Myszkowski, Karol</creatorcontrib><creatorcontrib>Leimkuehler, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Serrano, Ana</au><au>Pan, Xingang</au><au>Chen, Bin</au><au>Seidel, Hans-Peter</au><au>Theobalt, Christian</au><au>Myszkowski, Karol</au><au>Leimkuehler, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild</atitle><jtitle>arXiv.org</jtitle><date>2022-11-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2739576589 |
source | Free E- Journals |
subjects | Cameras Dynamic range Exposure Generative adversarial networks Response functions Supervised learning Unsupervised learning Visual observation |
title | GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GlowGAN:%20Unsupervised%20Learning%20of%20HDR%20Images%20from%20LDR%20Images%20in%20the%20Wild&rft.jtitle=arXiv.org&rft.au=Wang,%20Chao&rft.date=2022-11-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2739576589%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739576589&rft_id=info:pmid/&rfr_iscdi=true |