Challenges in Gaussian Processes for Non Intrusive Load Monitoring

Non-intrusive load monitoring (NILM) or energy disaggregation aims to break down total household energy consumption into constituent appliances. Prior work has shown that providing an energy breakdown can help people save up to 15\% of energy. In recent years, deep neural networks (deep NNs) have ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Desai, Aadesh, Vashishtha, Gautam, Patel, Zeel B, Batra, Nipun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Desai, Aadesh
Vashishtha, Gautam
Patel, Zeel B
Batra, Nipun
description Non-intrusive load monitoring (NILM) or energy disaggregation aims to break down total household energy consumption into constituent appliances. Prior work has shown that providing an energy breakdown can help people save up to 15\% of energy. In recent years, deep neural networks (deep NNs) have made remarkable progress in the domain of NILM. In this paper, we demonstrate the performance of Gaussian Processes (GPs) for NILM. We choose GPs due to three main reasons: i) GPs inherently model uncertainty; ii) equivalence between infinite NNs and GPs; iii) by appropriately designing the kernel we can incorporate domain expertise. We explore and present the challenges of applying our GP approaches to NILM.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2739576432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739576432</sourcerecordid><originalsourceid>FETCH-proquest_journals_27395764323</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_sOC5UDd96NXiC1Q8eC9B05pSdjXb-P168AM8DczMSEWo9SJZZogTFYt0aZpiUWKe60itq4fpe0utFXAEOxNEnCG4eL5Zka9t2MOZCQ40-CDubeHI5g4nJjewd9TO1Lgxvdj4x6mabzfXap88Pb-ClaHuOHj6phpLvcrLItOo_7s-rO05xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739576432</pqid></control><display><type>article</type><title>Challenges in Gaussian Processes for Non Intrusive Load Monitoring</title><source>Free E- Journals</source><creator>Desai, Aadesh ; Vashishtha, Gautam ; Patel, Zeel B ; Batra, Nipun</creator><creatorcontrib>Desai, Aadesh ; Vashishtha, Gautam ; Patel, Zeel B ; Batra, Nipun</creatorcontrib><description>Non-intrusive load monitoring (NILM) or energy disaggregation aims to break down total household energy consumption into constituent appliances. Prior work has shown that providing an energy breakdown can help people save up to 15\% of energy. In recent years, deep neural networks (deep NNs) have made remarkable progress in the domain of NILM. In this paper, we demonstrate the performance of Gaussian Processes (GPs) for NILM. We choose GPs due to three main reasons: i) GPs inherently model uncertainty; ii) equivalence between infinite NNs and GPs; iii) by appropriately designing the kernel we can incorporate domain expertise. We explore and present the challenges of applying our GP approaches to NILM.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Domains ; Energy consumption ; Gaussian process ; Monitoring ; Neural networks ; Residential energy</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Desai, Aadesh</creatorcontrib><creatorcontrib>Vashishtha, Gautam</creatorcontrib><creatorcontrib>Patel, Zeel B</creatorcontrib><creatorcontrib>Batra, Nipun</creatorcontrib><title>Challenges in Gaussian Processes for Non Intrusive Load Monitoring</title><title>arXiv.org</title><description>Non-intrusive load monitoring (NILM) or energy disaggregation aims to break down total household energy consumption into constituent appliances. Prior work has shown that providing an energy breakdown can help people save up to 15\% of energy. In recent years, deep neural networks (deep NNs) have made remarkable progress in the domain of NILM. In this paper, we demonstrate the performance of Gaussian Processes (GPs) for NILM. We choose GPs due to three main reasons: i) GPs inherently model uncertainty; ii) equivalence between infinite NNs and GPs; iii) by appropriately designing the kernel we can incorporate domain expertise. We explore and present the challenges of applying our GP approaches to NILM.</description><subject>Artificial neural networks</subject><subject>Domains</subject><subject>Energy consumption</subject><subject>Gaussian process</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Residential energy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQAIMgWLT_sOC5UDd96NXiC1Q8eC9B05pSdjXb-P168AM8DczMSEWo9SJZZogTFYt0aZpiUWKe60itq4fpe0utFXAEOxNEnCG4eL5Zka9t2MOZCQ40-CDubeHI5g4nJjewd9TO1Lgxvdj4x6mabzfXap88Pb-ClaHuOHj6phpLvcrLItOo_7s-rO05xw</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>Desai, Aadesh</creator><creator>Vashishtha, Gautam</creator><creator>Patel, Zeel B</creator><creator>Batra, Nipun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221118</creationdate><title>Challenges in Gaussian Processes for Non Intrusive Load Monitoring</title><author>Desai, Aadesh ; Vashishtha, Gautam ; Patel, Zeel B ; Batra, Nipun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27395764323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Domains</topic><topic>Energy consumption</topic><topic>Gaussian process</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Residential energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, Aadesh</creatorcontrib><creatorcontrib>Vashishtha, Gautam</creatorcontrib><creatorcontrib>Patel, Zeel B</creatorcontrib><creatorcontrib>Batra, Nipun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Aadesh</au><au>Vashishtha, Gautam</au><au>Patel, Zeel B</au><au>Batra, Nipun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Challenges in Gaussian Processes for Non Intrusive Load Monitoring</atitle><jtitle>arXiv.org</jtitle><date>2022-11-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Non-intrusive load monitoring (NILM) or energy disaggregation aims to break down total household energy consumption into constituent appliances. Prior work has shown that providing an energy breakdown can help people save up to 15\% of energy. In recent years, deep neural networks (deep NNs) have made remarkable progress in the domain of NILM. In this paper, we demonstrate the performance of Gaussian Processes (GPs) for NILM. We choose GPs due to three main reasons: i) GPs inherently model uncertainty; ii) equivalence between infinite NNs and GPs; iii) by appropriately designing the kernel we can incorporate domain expertise. We explore and present the challenges of applying our GP approaches to NILM.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2739576432
source Free E- Journals
subjects Artificial neural networks
Domains
Energy consumption
Gaussian process
Monitoring
Neural networks
Residential energy
title Challenges in Gaussian Processes for Non Intrusive Load Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Challenges%20in%20Gaussian%20Processes%20for%20Non%20Intrusive%20Load%20Monitoring&rft.jtitle=arXiv.org&rft.au=Desai,%20Aadesh&rft.date=2022-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2739576432%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739576432&rft_id=info:pmid/&rfr_iscdi=true