A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures
Highly branched gold (Au) nanostructures with sharp tips are considered excellent substrates for surface‐enhanced Raman scattering (SERS)‐based sensing technologies. Here, a simple synthetic route for producing Au or Au‐Ag bimetallic mesostructures with multiple sharpened tips in the presence of car...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-11, Vol.18 (47), p.e2203940-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | e2203940 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Kim, Sejung Palani, Stephen Civitci, Fehmi Nan, Xiaolin Ibsen, Stuart |
description | Highly branched gold (Au) nanostructures with sharp tips are considered excellent substrates for surface‐enhanced Raman scattering (SERS)‐based sensing technologies. Here, a simple synthetic route for producing Au or Au‐Ag bimetallic mesostructures with multiple sharpened tips in the presence of carbon quantum dots (CQDs) is presented. The morphologies of these mesostructured plasmonic nanoparticles (MSPNs) can be controlled by adjusting the concentration of CQDs, reaction temperatures, and seed particles. The optimal molar ratio for [HAuCl4]/[CQDs] is found to be ≈25. At this molar ratio, the diameters of MSPNs can be tuned from 80 to 200 nm by changing the reaction temperature from 25 to 80 °C. In addition, it is found that hierarchical MSPNs consisting of multiple Au nanocrystals can be formed over the entire seed particle surface. Finally, the SERS activity of these MSPNs is examined through the detection of rhodamine 6G and methylene blue. Of the different mesostructures, the bimetallic MSPNs have the highest sensitivity with the ability to detect 10−7 m of rhodamine 6G and 10−6 m of methylene blue. The properties of these MSPN particles, made using a novel synthetic process, make them excellent candidates for SERS‐based chemical sensing applications.
Development of a carbon quantum dot‐assisted synthetic pathway to produce various types of mesostructured plasmonic nanoparticles (MSPNs), resulting in sphere, rod, triangle, and cube structures. Additional synthetic pathways are developed for bimetallic structures based on Au‐Ag. The bimetallic MSPNs have the best surface‐enhanced Raman scattering performance with detection of rhodamine 6G at 10−7 m. |
doi_str_mv | 10.1002/smll.202203940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739548464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739548464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-e54d4e26c858df1469e4da32f6e7f404e28350f139c49e41deb2dc797f7258c93</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRbK1uXUrAdeq8MsksS_EFqRaqbofpPGxKHnUmoeTfO6W1Xbq6F75zvwsHgFsExwhC_OCrshxjiDEknMIzMEQMkZhlmJ8fdwQH4Mr7NYQEYZpeggFhmPEsRUOwmERfxnnZFqWJFn3drkxbqGgu29VW9pFtXDR3je5UUX9HM-Mb37pOtZ0zOpqX0ldNHfA3WZ8Cfw0urCy9uTnMEfh8evyYvsT5-_PrdJLHiiICY5NQTQ1mKksybRFl3FAtCbbMpJbCEGUkgRYRrmiIkDZLrFXKU5viJFOcjMD9vnfjmp_O-Fasm87V4aXAKeEJzSijgRrvKeUa752xYuOKSrpeICh2DsXOoTg6DAd3h9puWRl9xP-kBYDvgW2Q1v9TJxazPD-V_wKvx366</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739548464</pqid></control><display><type>article</type><title>A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kim, Sejung ; Palani, Stephen ; Civitci, Fehmi ; Nan, Xiaolin ; Ibsen, Stuart</creator><creatorcontrib>Kim, Sejung ; Palani, Stephen ; Civitci, Fehmi ; Nan, Xiaolin ; Ibsen, Stuart</creatorcontrib><description>Highly branched gold (Au) nanostructures with sharp tips are considered excellent substrates for surface‐enhanced Raman scattering (SERS)‐based sensing technologies. Here, a simple synthetic route for producing Au or Au‐Ag bimetallic mesostructures with multiple sharpened tips in the presence of carbon quantum dots (CQDs) is presented. The morphologies of these mesostructured plasmonic nanoparticles (MSPNs) can be controlled by adjusting the concentration of CQDs, reaction temperatures, and seed particles. The optimal molar ratio for [HAuCl4]/[CQDs] is found to be ≈25. At this molar ratio, the diameters of MSPNs can be tuned from 80 to 200 nm by changing the reaction temperature from 25 to 80 °C. In addition, it is found that hierarchical MSPNs consisting of multiple Au nanocrystals can be formed over the entire seed particle surface. Finally, the SERS activity of these MSPNs is examined through the detection of rhodamine 6G and methylene blue. Of the different mesostructures, the bimetallic MSPNs have the highest sensitivity with the ability to detect 10−7 m of rhodamine 6G and 10−6 m of methylene blue. The properties of these MSPN particles, made using a novel synthetic process, make them excellent candidates for SERS‐based chemical sensing applications.
Development of a carbon quantum dot‐assisted synthetic pathway to produce various types of mesostructured plasmonic nanoparticles (MSPNs), resulting in sphere, rod, triangle, and cube structures. Additional synthetic pathways are developed for bimetallic structures based on Au‐Ag. The bimetallic MSPNs have the best surface‐enhanced Raman scattering performance with detection of rhodamine 6G at 10−7 m.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202203940</identifier><identifier>PMID: 36269871</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bimetallic nanostructures ; Bimetals ; Carbon - chemistry ; carbon quantum dots ; Gold ; Gold - chemistry ; gold nanocrystals ; mesostructures ; Metal Nanoparticles - chemistry ; Methylene Blue ; Nanocrystals ; Nanoparticles ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Plasmonics ; Quantum dots ; Raman spectra ; Rhodamine 6G ; Silver ; Spectrum Analysis, Raman ; Substrates ; surface‐enhanced Raman scattering ; Tips</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-11, Vol.18 (47), p.e2203940-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-e54d4e26c858df1469e4da32f6e7f404e28350f139c49e41deb2dc797f7258c93</citedby><cites>FETCH-LOGICAL-c4130-e54d4e26c858df1469e4da32f6e7f404e28350f139c49e41deb2dc797f7258c93</cites><orcidid>0000-0001-6364-4362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202203940$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202203940$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36269871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sejung</creatorcontrib><creatorcontrib>Palani, Stephen</creatorcontrib><creatorcontrib>Civitci, Fehmi</creatorcontrib><creatorcontrib>Nan, Xiaolin</creatorcontrib><creatorcontrib>Ibsen, Stuart</creatorcontrib><title>A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Highly branched gold (Au) nanostructures with sharp tips are considered excellent substrates for surface‐enhanced Raman scattering (SERS)‐based sensing technologies. Here, a simple synthetic route for producing Au or Au‐Ag bimetallic mesostructures with multiple sharpened tips in the presence of carbon quantum dots (CQDs) is presented. The morphologies of these mesostructured plasmonic nanoparticles (MSPNs) can be controlled by adjusting the concentration of CQDs, reaction temperatures, and seed particles. The optimal molar ratio for [HAuCl4]/[CQDs] is found to be ≈25. At this molar ratio, the diameters of MSPNs can be tuned from 80 to 200 nm by changing the reaction temperature from 25 to 80 °C. In addition, it is found that hierarchical MSPNs consisting of multiple Au nanocrystals can be formed over the entire seed particle surface. Finally, the SERS activity of these MSPNs is examined through the detection of rhodamine 6G and methylene blue. Of the different mesostructures, the bimetallic MSPNs have the highest sensitivity with the ability to detect 10−7 m of rhodamine 6G and 10−6 m of methylene blue. The properties of these MSPN particles, made using a novel synthetic process, make them excellent candidates for SERS‐based chemical sensing applications.
Development of a carbon quantum dot‐assisted synthetic pathway to produce various types of mesostructured plasmonic nanoparticles (MSPNs), resulting in sphere, rod, triangle, and cube structures. Additional synthetic pathways are developed for bimetallic structures based on Au‐Ag. The bimetallic MSPNs have the best surface‐enhanced Raman scattering performance with detection of rhodamine 6G at 10−7 m.</description><subject>bimetallic nanostructures</subject><subject>Bimetals</subject><subject>Carbon - chemistry</subject><subject>carbon quantum dots</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>gold nanocrystals</subject><subject>mesostructures</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Methylene Blue</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Plasmonics</subject><subject>Quantum dots</subject><subject>Raman spectra</subject><subject>Rhodamine 6G</subject><subject>Silver</subject><subject>Spectrum Analysis, Raman</subject><subject>Substrates</subject><subject>surface‐enhanced Raman scattering</subject><subject>Tips</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AURgdRbK1uXUrAdeq8MsksS_EFqRaqbofpPGxKHnUmoeTfO6W1Xbq6F75zvwsHgFsExwhC_OCrshxjiDEknMIzMEQMkZhlmJ8fdwQH4Mr7NYQEYZpeggFhmPEsRUOwmERfxnnZFqWJFn3drkxbqGgu29VW9pFtXDR3je5UUX9HM-Mb37pOtZ0zOpqX0ldNHfA3WZ8Cfw0urCy9uTnMEfh8evyYvsT5-_PrdJLHiiICY5NQTQ1mKksybRFl3FAtCbbMpJbCEGUkgRYRrmiIkDZLrFXKU5viJFOcjMD9vnfjmp_O-Fasm87V4aXAKeEJzSijgRrvKeUa752xYuOKSrpeICh2DsXOoTg6DAd3h9puWRl9xP-kBYDvgW2Q1v9TJxazPD-V_wKvx366</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kim, Sejung</creator><creator>Palani, Stephen</creator><creator>Civitci, Fehmi</creator><creator>Nan, Xiaolin</creator><creator>Ibsen, Stuart</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6364-4362</orcidid></search><sort><creationdate>20221101</creationdate><title>A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures</title><author>Kim, Sejung ; Palani, Stephen ; Civitci, Fehmi ; Nan, Xiaolin ; Ibsen, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-e54d4e26c858df1469e4da32f6e7f404e28350f139c49e41deb2dc797f7258c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bimetallic nanostructures</topic><topic>Bimetals</topic><topic>Carbon - chemistry</topic><topic>carbon quantum dots</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>gold nanocrystals</topic><topic>mesostructures</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Methylene Blue</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Plasmonics</topic><topic>Quantum dots</topic><topic>Raman spectra</topic><topic>Rhodamine 6G</topic><topic>Silver</topic><topic>Spectrum Analysis, Raman</topic><topic>Substrates</topic><topic>surface‐enhanced Raman scattering</topic><topic>Tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sejung</creatorcontrib><creatorcontrib>Palani, Stephen</creatorcontrib><creatorcontrib>Civitci, Fehmi</creatorcontrib><creatorcontrib>Nan, Xiaolin</creatorcontrib><creatorcontrib>Ibsen, Stuart</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sejung</au><au>Palani, Stephen</au><au>Civitci, Fehmi</au><au>Nan, Xiaolin</au><au>Ibsen, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>47</issue><spage>e2203940</spage><epage>n/a</epage><pages>e2203940-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Highly branched gold (Au) nanostructures with sharp tips are considered excellent substrates for surface‐enhanced Raman scattering (SERS)‐based sensing technologies. Here, a simple synthetic route for producing Au or Au‐Ag bimetallic mesostructures with multiple sharpened tips in the presence of carbon quantum dots (CQDs) is presented. The morphologies of these mesostructured plasmonic nanoparticles (MSPNs) can be controlled by adjusting the concentration of CQDs, reaction temperatures, and seed particles. The optimal molar ratio for [HAuCl4]/[CQDs] is found to be ≈25. At this molar ratio, the diameters of MSPNs can be tuned from 80 to 200 nm by changing the reaction temperature from 25 to 80 °C. In addition, it is found that hierarchical MSPNs consisting of multiple Au nanocrystals can be formed over the entire seed particle surface. Finally, the SERS activity of these MSPNs is examined through the detection of rhodamine 6G and methylene blue. Of the different mesostructures, the bimetallic MSPNs have the highest sensitivity with the ability to detect 10−7 m of rhodamine 6G and 10−6 m of methylene blue. The properties of these MSPN particles, made using a novel synthetic process, make them excellent candidates for SERS‐based chemical sensing applications.
Development of a carbon quantum dot‐assisted synthetic pathway to produce various types of mesostructured plasmonic nanoparticles (MSPNs), resulting in sphere, rod, triangle, and cube structures. Additional synthetic pathways are developed for bimetallic structures based on Au‐Ag. The bimetallic MSPNs have the best surface‐enhanced Raman scattering performance with detection of rhodamine 6G at 10−7 m.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36269871</pmid><doi>10.1002/smll.202203940</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6364-4362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-11, Vol.18 (47), p.e2203940-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2739548464 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | bimetallic nanostructures Bimetals Carbon - chemistry carbon quantum dots Gold Gold - chemistry gold nanocrystals mesostructures Metal Nanoparticles - chemistry Methylene Blue Nanocrystals Nanoparticles Nanostructure Nanostructures - chemistry Nanotechnology Plasmonics Quantum dots Raman spectra Rhodamine 6G Silver Spectrum Analysis, Raman Substrates surface‐enhanced Raman scattering Tips |
title | A Versatile Synthetic Pathway for Producing Mesostructured Plasmonic Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Versatile%20Synthetic%20Pathway%20for%20Producing%20Mesostructured%20Plasmonic%20Nanostructures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kim,%20Sejung&rft.date=2022-11-01&rft.volume=18&rft.issue=47&rft.spage=e2203940&rft.epage=n/a&rft.pages=e2203940-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202203940&rft_dat=%3Cproquest_cross%3E2739548464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739548464&rft_id=info:pmid/36269871&rfr_iscdi=true |