Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation
The present research produces a new technique for the optimum operation of an isolated microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To update the proportional-integral (PI) controller gains online, the suggested approach considers the impact of the actuatin...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-11, Vol.14 (22), p.14928 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 14928 |
container_title | Sustainability |
container_volume | 14 |
creator | Hussien, Ahmed M Kim, Jonghoon Alkuhayli, Abdulaziz Alharbi, Mohammed Hasanien, Hany M Tostado-Véliz, Marcos Turky, Rania A Jurado, Francisco |
description | The present research produces a new technique for the optimum operation of an isolated microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To update the proportional-integral (PI) controller gains online, the suggested approach considers the impact of the actuating error signal as well as its magnitude. To reach a compromise result between the various purposes, the Response Surface Methodology (RSMT) is combined with the sunflower optimization (SFO) and particle swarm optimization (PSO) algorithms. To demonstrate the success of the novel approach, a benchmark MGD is evaluated in three different Incidents: (1) removing the MGD from the utility (islanding mode); (2) load variations under islanding mode; and (3) a three-phase fault under islanding mode. Extensive simulations are run to test the new technique using the PSCAD/EMTDC program. The validity of the proposed optimizer is demonstrated by comparing its results with those obtained using the least mean and square root of exponential method (LMSRE) based adaptive control, SFO, and PSO methodologies. The study demonstrates the superiority of the proposed EBSABA over the LMSRE, SFO, and PSO approaches in the system’s transient reactions. |
doi_str_mv | 10.3390/su142214928 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2739479886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747189525</galeid><sourcerecordid>A747189525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1f1fe439723abdfdebd234d895e3d29d05ea84b57770c5c73e7aeb4ff605d723</originalsourceid><addsrcrecordid>eNpVkd9LwzAQx4MoOOae_AcKPol05leX9rEMnYPJxO09pM2ldHTNTFJx_72R-bAlDzlyn-99uTuE7gmeMlbgZz8QTinhBc2v0IhiQVKCM3x9Ft-iifc7HA9jpCCzEVqUWh1C-w3JxzKZ2z442yWb4FSA5pgY65J1TO9Vl7y3tbONa3VSDsH2dm8HH5MQ0db2d-jGqM7D5P8do-3ry3b-lq7Wi-W8XKU1EySkxBADnBWCMlVpo6HSlHGdFxkwTQuNM1A5rzIhBK6zWjAQCipuzAxnOorG6OFU9uDs1wA-yJ0dXB8dJRWs4KLI81mkpieqUR3Itjc2NlTHq2Hf1rYH08b_UnBBojPNouDxQhCZAD-hUYP3crn5vGSfTmwch_cOjDy4OCB3lATLv0XIs0WwX5qGeYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739479886</pqid></control><display><type>article</type><title>Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Hussien, Ahmed M ; Kim, Jonghoon ; Alkuhayli, Abdulaziz ; Alharbi, Mohammed ; Hasanien, Hany M ; Tostado-Véliz, Marcos ; Turky, Rania A ; Jurado, Francisco</creator><creatorcontrib>Hussien, Ahmed M ; Kim, Jonghoon ; Alkuhayli, Abdulaziz ; Alharbi, Mohammed ; Hasanien, Hany M ; Tostado-Véliz, Marcos ; Turky, Rania A ; Jurado, Francisco</creatorcontrib><description>The present research produces a new technique for the optimum operation of an isolated microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To update the proportional-integral (PI) controller gains online, the suggested approach considers the impact of the actuating error signal as well as its magnitude. To reach a compromise result between the various purposes, the Response Surface Methodology (RSMT) is combined with the sunflower optimization (SFO) and particle swarm optimization (PSO) algorithms. To demonstrate the success of the novel approach, a benchmark MGD is evaluated in three different Incidents: (1) removing the MGD from the utility (islanding mode); (2) load variations under islanding mode; and (3) a three-phase fault under islanding mode. Extensive simulations are run to test the new technique using the PSCAD/EMTDC program. The validity of the proposed optimizer is demonstrated by comparing its results with those obtained using the least mean and square root of exponential method (LMSRE) based adaptive control, SFO, and PSO methodologies. The study demonstrates the superiority of the proposed EBSABA over the LMSRE, SFO, and PSO approaches in the system’s transient reactions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142214928</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; Algorithms ; Analysis ; Bayesian analysis ; Distributed generation ; Efficiency ; Electric power production ; Error signals ; Load ; Load fluctuation ; Optimization ; Optimization algorithms ; Optimization techniques ; Response surface methodology ; Systems stability ; Technology application</subject><ispartof>Sustainability, 2022-11, Vol.14 (22), p.14928</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1f1fe439723abdfdebd234d895e3d29d05ea84b57770c5c73e7aeb4ff605d723</citedby><cites>FETCH-LOGICAL-c371t-1f1fe439723abdfdebd234d895e3d29d05ea84b57770c5c73e7aeb4ff605d723</cites><orcidid>0000-0002-5924-534X ; 0000-0001-7634-5724 ; 0000-0001-7076-1065 ; 0000-0001-6595-6423 ; 0000-0001-8122-7415 ; 0000-0001-8757-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Hussien, Ahmed M</creatorcontrib><creatorcontrib>Kim, Jonghoon</creatorcontrib><creatorcontrib>Alkuhayli, Abdulaziz</creatorcontrib><creatorcontrib>Alharbi, Mohammed</creatorcontrib><creatorcontrib>Hasanien, Hany M</creatorcontrib><creatorcontrib>Tostado-Véliz, Marcos</creatorcontrib><creatorcontrib>Turky, Rania A</creatorcontrib><creatorcontrib>Jurado, Francisco</creatorcontrib><title>Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation</title><title>Sustainability</title><description>The present research produces a new technique for the optimum operation of an isolated microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To update the proportional-integral (PI) controller gains online, the suggested approach considers the impact of the actuating error signal as well as its magnitude. To reach a compromise result between the various purposes, the Response Surface Methodology (RSMT) is combined with the sunflower optimization (SFO) and particle swarm optimization (PSO) algorithms. To demonstrate the success of the novel approach, a benchmark MGD is evaluated in three different Incidents: (1) removing the MGD from the utility (islanding mode); (2) load variations under islanding mode; and (3) a three-phase fault under islanding mode. Extensive simulations are run to test the new technique using the PSCAD/EMTDC program. The validity of the proposed optimizer is demonstrated by comparing its results with those obtained using the least mean and square root of exponential method (LMSRE) based adaptive control, SFO, and PSO methodologies. The study demonstrates the superiority of the proposed EBSABA over the LMSRE, SFO, and PSO approaches in the system’s transient reactions.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Distributed generation</subject><subject>Efficiency</subject><subject>Electric power production</subject><subject>Error signals</subject><subject>Load</subject><subject>Load fluctuation</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Response surface methodology</subject><subject>Systems stability</subject><subject>Technology application</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9LwzAQx4MoOOae_AcKPol05leX9rEMnYPJxO09pM2ldHTNTFJx_72R-bAlDzlyn-99uTuE7gmeMlbgZz8QTinhBc2v0IhiQVKCM3x9Ft-iifc7HA9jpCCzEVqUWh1C-w3JxzKZ2z442yWb4FSA5pgY65J1TO9Vl7y3tbONa3VSDsH2dm8HH5MQ0db2d-jGqM7D5P8do-3ry3b-lq7Wi-W8XKU1EySkxBADnBWCMlVpo6HSlHGdFxkwTQuNM1A5rzIhBK6zWjAQCipuzAxnOorG6OFU9uDs1wA-yJ0dXB8dJRWs4KLI81mkpieqUR3Itjc2NlTHq2Hf1rYH08b_UnBBojPNouDxQhCZAD-hUYP3crn5vGSfTmwch_cOjDy4OCB3lATLv0XIs0WwX5qGeYM</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Hussien, Ahmed M</creator><creator>Kim, Jonghoon</creator><creator>Alkuhayli, Abdulaziz</creator><creator>Alharbi, Mohammed</creator><creator>Hasanien, Hany M</creator><creator>Tostado-Véliz, Marcos</creator><creator>Turky, Rania A</creator><creator>Jurado, Francisco</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5924-534X</orcidid><orcidid>https://orcid.org/0000-0001-7634-5724</orcidid><orcidid>https://orcid.org/0000-0001-7076-1065</orcidid><orcidid>https://orcid.org/0000-0001-6595-6423</orcidid><orcidid>https://orcid.org/0000-0001-8122-7415</orcidid><orcidid>https://orcid.org/0000-0001-8757-547X</orcidid></search><sort><creationdate>20221101</creationdate><title>Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation</title><author>Hussien, Ahmed M ; Kim, Jonghoon ; Alkuhayli, Abdulaziz ; Alharbi, Mohammed ; Hasanien, Hany M ; Tostado-Véliz, Marcos ; Turky, Rania A ; Jurado, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1f1fe439723abdfdebd234d895e3d29d05ea84b57770c5c73e7aeb4ff605d723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Distributed generation</topic><topic>Efficiency</topic><topic>Electric power production</topic><topic>Error signals</topic><topic>Load</topic><topic>Load fluctuation</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Response surface methodology</topic><topic>Systems stability</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussien, Ahmed M</creatorcontrib><creatorcontrib>Kim, Jonghoon</creatorcontrib><creatorcontrib>Alkuhayli, Abdulaziz</creatorcontrib><creatorcontrib>Alharbi, Mohammed</creatorcontrib><creatorcontrib>Hasanien, Hany M</creatorcontrib><creatorcontrib>Tostado-Véliz, Marcos</creatorcontrib><creatorcontrib>Turky, Rania A</creatorcontrib><creatorcontrib>Jurado, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussien, Ahmed M</au><au>Kim, Jonghoon</au><au>Alkuhayli, Abdulaziz</au><au>Alharbi, Mohammed</au><au>Hasanien, Hany M</au><au>Tostado-Véliz, Marcos</au><au>Turky, Rania A</au><au>Jurado, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation</atitle><jtitle>Sustainability</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>14928</spage><pages>14928-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The present research produces a new technique for the optimum operation of an isolated microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To update the proportional-integral (PI) controller gains online, the suggested approach considers the impact of the actuating error signal as well as its magnitude. To reach a compromise result between the various purposes, the Response Surface Methodology (RSMT) is combined with the sunflower optimization (SFO) and particle swarm optimization (PSO) algorithms. To demonstrate the success of the novel approach, a benchmark MGD is evaluated in three different Incidents: (1) removing the MGD from the utility (islanding mode); (2) load variations under islanding mode; and (3) a three-phase fault under islanding mode. Extensive simulations are run to test the new technique using the PSCAD/EMTDC program. The validity of the proposed optimizer is demonstrated by comparing its results with those obtained using the least mean and square root of exponential method (LMSRE) based adaptive control, SFO, and PSO methodologies. The study demonstrates the superiority of the proposed EBSABA over the LMSRE, SFO, and PSO approaches in the system’s transient reactions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142214928</doi><orcidid>https://orcid.org/0000-0002-5924-534X</orcidid><orcidid>https://orcid.org/0000-0001-7634-5724</orcidid><orcidid>https://orcid.org/0000-0001-7076-1065</orcidid><orcidid>https://orcid.org/0000-0001-6595-6423</orcidid><orcidid>https://orcid.org/0000-0001-8122-7415</orcidid><orcidid>https://orcid.org/0000-0001-8757-547X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-11, Vol.14 (22), p.14928 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2739479886 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Adaptive algorithms Algorithms Analysis Bayesian analysis Distributed generation Efficiency Electric power production Error signals Load Load fluctuation Optimization Optimization algorithms Optimization techniques Response surface methodology Systems stability Technology application |
title | Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20PI%20Control%20Strategy%20for%20Optimal%20Microgrid%20Autonomous%20Operation&rft.jtitle=Sustainability&rft.au=Hussien,%20Ahmed%20M&rft.date=2022-11-01&rft.volume=14&rft.issue=22&rft.spage=14928&rft.pages=14928-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142214928&rft_dat=%3Cgale_proqu%3EA747189525%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739479886&rft_id=info:pmid/&rft_galeid=A747189525&rfr_iscdi=true |