Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization

In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-11, Vol.14 (22), p.15448
Hauptverfasser: Adewuyi, Oludamilare Bode, Folly, Komla A, Oyedokun, David T. O, Ogunwole, Emmanuel Idowu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 15448
container_title Sustainability
container_volume 14
creator Adewuyi, Oludamilare Bode
Folly, Komla A
Oyedokun, David T. O
Ogunwole, Emmanuel Idowu
description In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary index (CBI) approach using the machine learning technique. Prediction models are based on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy ‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measuring the VSM of power systems under different loading conditions. Six vital power system parameters, including the transmission line and bus parameters, the power injection, and the system voltage derived from load flow analysis, are used as the ANFIS model implementation input. The performances of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated using error and regression analysis metrics. The performance metrics are the root mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses. For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is 19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a superior performance for both test cases, as indicated by the percentage reduction in prediction error, although at the cost of a higher simulation time.
doi_str_mv 10.3390/su142215448
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2739478375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747188705</galeid><sourcerecordid>A747188705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dd9435c6d419419cdf47dc5d26af1d16deeee3f7126fc635b744a95e0795a5f93</originalsourceid><addsrcrecordid>eNpVkc1OJCEQxzsbN1mjnnwBkj1tNq3QQDN9nJhRJ_ErO7rXDkLRYrphBNrZmQfY5xYdTbSoBKrqV3-SqqI4JPiI0gYfx5GwqiKcscm3YrfCgpQEc7zz6f2jOIjxEWejlDSk3i3-3_gVBLRYxwQD-uv7JDtAiyTvbW_TGl3K0FmHZjHZQSbrHbqL1nVoquUy2WdAVzAGX56Om80azZ2BAE7Bh97MPcgcarSy6QHdyJCs6nN1JcOArrPAYDdvqvvFdyP7CAfv915xdzq7PTkvL67P5ifTi1JRTFKpdcMoV7VmpMmutGFCK66rWhqiSa0hGzWCVLVRNeX3gjHZcMCi4ZKbhu4VP7e6y-CfRoipffRjcPnLthK0YWJCBc_U0ZbqZA-tdcanIFU-GgarvANjc34qmCCTicCvDb--NGQmwb_UyTHGdr7485X9vWVV8DEGMO0y5NmGdUtw-7rI9tMi6Qt1spFP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739478375</pqid></control><display><type>article</type><title>Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Adewuyi, Oludamilare Bode ; Folly, Komla A ; Oyedokun, David T. O ; Ogunwole, Emmanuel Idowu</creator><creatorcontrib>Adewuyi, Oludamilare Bode ; Folly, Komla A ; Oyedokun, David T. O ; Ogunwole, Emmanuel Idowu</creatorcontrib><description>In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary index (CBI) approach using the machine learning technique. Prediction models are based on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy ‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measuring the VSM of power systems under different loading conditions. Six vital power system parameters, including the transmission line and bus parameters, the power injection, and the system voltage derived from load flow analysis, are used as the ANFIS model implementation input. The performances of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated using error and regression analysis metrics. The performance metrics are the root mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses. For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is 19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a superior performance for both test cases, as indicated by the percentage reduction in prediction error, although at the cost of a higher simulation time.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142215448</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive systems ; Algorithms ; Artificial intelligence ; Clustering ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Electric power systems ; Energy development ; Energy security ; Error analysis ; Fuzzy algorithms ; Fuzzy logic ; Fuzzy systems ; Inference ; Infrastructure ; Machine learning ; Mathematical optimization ; Neural networks ; Nigeria ; Optimization ; Prediction models ; Regression analysis ; Root-mean-square errors ; Support vector machines ; Transmission lines ; Voltage ; Voltage stability</subject><ispartof>Sustainability, 2022-11, Vol.14 (22), p.15448</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-dd9435c6d419419cdf47dc5d26af1d16deeee3f7126fc635b744a95e0795a5f93</citedby><cites>FETCH-LOGICAL-c301t-dd9435c6d419419cdf47dc5d26af1d16deeee3f7126fc635b744a95e0795a5f93</cites><orcidid>0000-0002-3946-1264 ; 0000-0001-8012-9098 ; 0000-0002-9899-4140 ; 0000-0002-8025-0143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adewuyi, Oludamilare Bode</creatorcontrib><creatorcontrib>Folly, Komla A</creatorcontrib><creatorcontrib>Oyedokun, David T. O</creatorcontrib><creatorcontrib>Ogunwole, Emmanuel Idowu</creatorcontrib><title>Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization</title><title>Sustainability</title><description>In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary index (CBI) approach using the machine learning technique. Prediction models are based on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy ‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measuring the VSM of power systems under different loading conditions. Six vital power system parameters, including the transmission line and bus parameters, the power injection, and the system voltage derived from load flow analysis, are used as the ANFIS model implementation input. The performances of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated using error and regression analysis metrics. The performance metrics are the root mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses. For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is 19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a superior performance for both test cases, as indicated by the percentage reduction in prediction error, although at the cost of a higher simulation time.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Electric power systems</subject><subject>Energy development</subject><subject>Energy security</subject><subject>Error analysis</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Inference</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>Neural networks</subject><subject>Nigeria</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Root-mean-square errors</subject><subject>Support vector machines</subject><subject>Transmission lines</subject><subject>Voltage</subject><subject>Voltage stability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc1OJCEQxzsbN1mjnnwBkj1tNq3QQDN9nJhRJ_ErO7rXDkLRYrphBNrZmQfY5xYdTbSoBKrqV3-SqqI4JPiI0gYfx5GwqiKcscm3YrfCgpQEc7zz6f2jOIjxEWejlDSk3i3-3_gVBLRYxwQD-uv7JDtAiyTvbW_TGl3K0FmHZjHZQSbrHbqL1nVoquUy2WdAVzAGX56Om80azZ2BAE7Bh97MPcgcarSy6QHdyJCs6nN1JcOArrPAYDdvqvvFdyP7CAfv915xdzq7PTkvL67P5ifTi1JRTFKpdcMoV7VmpMmutGFCK66rWhqiSa0hGzWCVLVRNeX3gjHZcMCi4ZKbhu4VP7e6y-CfRoipffRjcPnLthK0YWJCBc_U0ZbqZA-tdcanIFU-GgarvANjc34qmCCTicCvDb--NGQmwb_UyTHGdr7485X9vWVV8DEGMO0y5NmGdUtw-7rI9tMi6Qt1spFP</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Adewuyi, Oludamilare Bode</creator><creator>Folly, Komla A</creator><creator>Oyedokun, David T. O</creator><creator>Ogunwole, Emmanuel Idowu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3946-1264</orcidid><orcidid>https://orcid.org/0000-0001-8012-9098</orcidid><orcidid>https://orcid.org/0000-0002-9899-4140</orcidid><orcidid>https://orcid.org/0000-0002-8025-0143</orcidid></search><sort><creationdate>20221101</creationdate><title>Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization</title><author>Adewuyi, Oludamilare Bode ; Folly, Komla A ; Oyedokun, David T. O ; Ogunwole, Emmanuel Idowu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dd9435c6d419419cdf47dc5d26af1d16deeee3f7126fc635b744a95e0795a5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Electric power systems</topic><topic>Energy development</topic><topic>Energy security</topic><topic>Error analysis</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Inference</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>Neural networks</topic><topic>Nigeria</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Root-mean-square errors</topic><topic>Support vector machines</topic><topic>Transmission lines</topic><topic>Voltage</topic><topic>Voltage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adewuyi, Oludamilare Bode</creatorcontrib><creatorcontrib>Folly, Komla A</creatorcontrib><creatorcontrib>Oyedokun, David T. O</creatorcontrib><creatorcontrib>Ogunwole, Emmanuel Idowu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adewuyi, Oludamilare Bode</au><au>Folly, Komla A</au><au>Oyedokun, David T. O</au><au>Ogunwole, Emmanuel Idowu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization</atitle><jtitle>Sustainability</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>15448</spage><pages>15448-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary index (CBI) approach using the machine learning technique. Prediction models are based on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy ‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measuring the VSM of power systems under different loading conditions. Six vital power system parameters, including the transmission line and bus parameters, the power injection, and the system voltage derived from load flow analysis, are used as the ANFIS model implementation input. The performances of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated using error and regression analysis metrics. The performance metrics are the root mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses. For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is 19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a superior performance for both test cases, as indicated by the percentage reduction in prediction error, although at the cost of a higher simulation time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142215448</doi><orcidid>https://orcid.org/0000-0002-3946-1264</orcidid><orcidid>https://orcid.org/0000-0001-8012-9098</orcidid><orcidid>https://orcid.org/0000-0002-9899-4140</orcidid><orcidid>https://orcid.org/0000-0002-8025-0143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-11, Vol.14 (22), p.15448
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2739478375
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adaptive systems
Algorithms
Artificial intelligence
Clustering
Correlation coefficient
Correlation coefficients
Deep learning
Electric power systems
Energy development
Energy security
Error analysis
Fuzzy algorithms
Fuzzy logic
Fuzzy systems
Inference
Infrastructure
Machine learning
Mathematical optimization
Neural networks
Nigeria
Optimization
Prediction models
Regression analysis
Root-mean-square errors
Support vector machines
Transmission lines
Voltage
Voltage stability
title Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20System%20Voltage%20Stability%20Margin%20Estimation%20Using%20Adaptive%20Neuro-Fuzzy%20Inference%20System%20Enhanced%20with%20Particle%20Swarm%20Optimization&rft.jtitle=Sustainability&rft.au=Adewuyi,%20Oludamilare%20Bode&rft.date=2022-11-01&rft.volume=14&rft.issue=22&rft.spage=15448&rft.pages=15448-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142215448&rft_dat=%3Cgale_proqu%3EA747188705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739478375&rft_id=info:pmid/&rft_galeid=A747188705&rfr_iscdi=true