Study on Analysis Principle of Spatial System Method for a Hydraulic Steel Gate
The target of this paper is to ensure that the spatial system method has scientific and efficient rules to follow in structural analysis of a hydraulic steel gate, and to overcome the problems of randomness and fuzziness in the analysis process. Based on the idea of part and whole, the analysis prin...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-11, Vol.14 (22), p.14804 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The target of this paper is to ensure that the spatial system method has scientific and efficient rules to follow in structural analysis of a hydraulic steel gate, and to overcome the problems of randomness and fuzziness in the analysis process. Based on the idea of part and whole, the analysis principle of the spatial system method for a steel gate is systematically studied using the combination of theoretical calculation, finite element analysis, and prototype testing. First, the method is verified, with theoretical calculation used to ensure the authenticity of geometric modeling, the appropriateness of the element type, the rationality of meshing, the accuracy of constraints, and load application when the spatial system method is used to analyze the gate structure (panel, arm, and beam). The specific and practical feasible analysis principles of using the spatial system method to analyze the gate structure are provided. Second, the analysis of the gate structure is carried out using the analysis principle of the spatial system method. Finally, a prototype test is used to verify the analysis results of the spatial system method. Based on the prototype test results, the maximum absolute error of static displacement is 0.58 mm and the maximum relative error of static stress is 9.19%, which verifies the rationality and accuracy of the analysis principle of the spatial system method. The key technical problems restricting the transition of the gate structure analysis from the plane system method to the spatial system method are preliminarily solved. This first exploration is made for the popularization and application of the spatial system method, and lays a technical foundation for improving the quality and efficiency of gate structure design. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su142214804 |