Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage
Phase change materials employed as thermal energy storage can aid in maximizing the use of stored solar energy. The current research examined the impact of three kinds of phase change materials (PCMs) on the dynamic performance of a solar organic Rankine cycle (ORC) system based on a direct vapor pr...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-11, Vol.14 (22), p.15296 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 15296 |
container_title | Sustainability |
container_volume | 14 |
creator | Alvi, Jahan Zeb Yu Jinghu Yongqiang Feng Asim, Muhammad Wang Qian Gang Pei |
description | Phase change materials employed as thermal energy storage can aid in maximizing the use of stored solar energy. The current research examined the impact of three kinds of phase change materials (PCMs) on the dynamic performance of a solar organic Rankine cycle (ORC) system based on a direct vapor production. A number of evacuated flat plate collectors, a condenser, an expander, and an organic fluid pump make up this system. The thermodynamic cycle model of the direct vapor generation (DVG) solar ORC system was combined with the finite difference model of a phase change material heat storage tank created in MATLAB. The effect of PCMs (Organic, Inorganic and Eutectic PCMs) on the collector, ORC, and system efficiency, net power output, PCM temperature, and heat stored was studied weekly, monthly, and annually. Among the selected PCMs, Mg(NO3)2.6H2O had the highest system efficiency at 9.34%; KNO3-NaNO2 had the highest net power output at 33.80 kW; and MgCl2.6H2O stored the maximum energy of 20.18 MJ annually. Under the given operational and boundary conditions, the spring and fall were preferable to the summer and winter months for storing heat from phase change materials. |
doi_str_mv | 10.3390/su142215296 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2739476599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747187998</galeid><sourcerecordid>A747187998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2fc8baa47bea004cbe75ccca6f0bded3ad8babe96a630de1b3dc6fad04138c083</originalsourceid><addsrcrecordid>eNpVkU1PwzAMhisEEtPgxB-IxAmhjaTpmuU4la9JSEMbcK3c1BmBNilJKti_p2gcwD7Ysh-_PrxJcsbolHNJr0LPsjRls1TmB8kopYJNGJ3Rwz_9cXIawhsdgnMmWT5K7CN67XwLViFZhIAhtGgjcZpcG48qkhfonCd3aNFDNM6SjWvAk5XfgjWKrMG-G4uk2KkGyWYXIrakcH3XYE0-TXwl9wiRbKLzsMWT5EhDE_D0t46T59ubp-J-8rC6WxaLh4nigsVJqtW8AshEhUBppioUM6UU5JpWNdYc6mFdocwh57RGVvFa5RpqmjE-V3TOx8n5Xrfz7qPHEMs313s7vCxTwWUm8pmUAzXdU1tosDRWu-hBDVlja5SzqM0wX4hMsLmQ8kf24t_BwET8ilvoQyiXm_V_9nLPKu9C8KjLzpsW_K5ktPwxrPxjGP8GqyKJSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739476599</pqid></control><display><type>article</type><title>Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alvi, Jahan Zeb ; Yu Jinghu ; Yongqiang Feng ; Asim, Muhammad ; Wang Qian ; Gang Pei</creator><creatorcontrib>Alvi, Jahan Zeb ; Yu Jinghu ; Yongqiang Feng ; Asim, Muhammad ; Wang Qian ; Gang Pei</creatorcontrib><description>Phase change materials employed as thermal energy storage can aid in maximizing the use of stored solar energy. The current research examined the impact of three kinds of phase change materials (PCMs) on the dynamic performance of a solar organic Rankine cycle (ORC) system based on a direct vapor production. A number of evacuated flat plate collectors, a condenser, an expander, and an organic fluid pump make up this system. The thermodynamic cycle model of the direct vapor generation (DVG) solar ORC system was combined with the finite difference model of a phase change material heat storage tank created in MATLAB. The effect of PCMs (Organic, Inorganic and Eutectic PCMs) on the collector, ORC, and system efficiency, net power output, PCM temperature, and heat stored was studied weekly, monthly, and annually. Among the selected PCMs, Mg(NO3)2.6H2O had the highest system efficiency at 9.34%; KNO3-NaNO2 had the highest net power output at 33.80 kW; and MgCl2.6H2O stored the maximum energy of 20.18 MJ annually. Under the given operational and boundary conditions, the spring and fall were preferable to the summer and winter months for storing heat from phase change materials.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142215296</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Comparative analysis ; Efficiency ; Energy storage ; Equipment and supplies ; Finite difference method ; Flat plates ; Heat ; Heat conductivity ; Heat exchangers ; Heat storage ; Magnesium chloride ; Molecular weight ; Performance assessment ; Phase change materials ; Phase transitions ; Radiation ; Rankine cycle ; Solar energy ; Storage tanks ; Sustainability ; Thermal energy ; Thermal properties ; Vapors</subject><ispartof>Sustainability, 2022-11, Vol.14 (22), p.15296</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-2fc8baa47bea004cbe75ccca6f0bded3ad8babe96a630de1b3dc6fad04138c083</citedby><cites>FETCH-LOGICAL-c371t-2fc8baa47bea004cbe75ccca6f0bded3ad8babe96a630de1b3dc6fad04138c083</cites><orcidid>0000-0002-5110-7794 ; 0000-0003-2145-4880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Alvi, Jahan Zeb</creatorcontrib><creatorcontrib>Yu Jinghu</creatorcontrib><creatorcontrib>Yongqiang Feng</creatorcontrib><creatorcontrib>Asim, Muhammad</creatorcontrib><creatorcontrib>Wang Qian</creatorcontrib><creatorcontrib>Gang Pei</creatorcontrib><title>Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage</title><title>Sustainability</title><description>Phase change materials employed as thermal energy storage can aid in maximizing the use of stored solar energy. The current research examined the impact of three kinds of phase change materials (PCMs) on the dynamic performance of a solar organic Rankine cycle (ORC) system based on a direct vapor production. A number of evacuated flat plate collectors, a condenser, an expander, and an organic fluid pump make up this system. The thermodynamic cycle model of the direct vapor generation (DVG) solar ORC system was combined with the finite difference model of a phase change material heat storage tank created in MATLAB. The effect of PCMs (Organic, Inorganic and Eutectic PCMs) on the collector, ORC, and system efficiency, net power output, PCM temperature, and heat stored was studied weekly, monthly, and annually. Among the selected PCMs, Mg(NO3)2.6H2O had the highest system efficiency at 9.34%; KNO3-NaNO2 had the highest net power output at 33.80 kW; and MgCl2.6H2O stored the maximum energy of 20.18 MJ annually. Under the given operational and boundary conditions, the spring and fall were preferable to the summer and winter months for storing heat from phase change materials.</description><subject>Boundary conditions</subject><subject>Comparative analysis</subject><subject>Efficiency</subject><subject>Energy storage</subject><subject>Equipment and supplies</subject><subject>Finite difference method</subject><subject>Flat plates</subject><subject>Heat</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat storage</subject><subject>Magnesium chloride</subject><subject>Molecular weight</subject><subject>Performance assessment</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Radiation</subject><subject>Rankine cycle</subject><subject>Solar energy</subject><subject>Storage tanks</subject><subject>Sustainability</subject><subject>Thermal energy</subject><subject>Thermal properties</subject><subject>Vapors</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU1PwzAMhisEEtPgxB-IxAmhjaTpmuU4la9JSEMbcK3c1BmBNilJKti_p2gcwD7Ysh-_PrxJcsbolHNJr0LPsjRls1TmB8kopYJNGJ3Rwz_9cXIawhsdgnMmWT5K7CN67XwLViFZhIAhtGgjcZpcG48qkhfonCd3aNFDNM6SjWvAk5XfgjWKrMG-G4uk2KkGyWYXIrakcH3XYE0-TXwl9wiRbKLzsMWT5EhDE_D0t46T59ubp-J-8rC6WxaLh4nigsVJqtW8AshEhUBppioUM6UU5JpWNdYc6mFdocwh57RGVvFa5RpqmjE-V3TOx8n5Xrfz7qPHEMs313s7vCxTwWUm8pmUAzXdU1tosDRWu-hBDVlja5SzqM0wX4hMsLmQ8kf24t_BwET8ilvoQyiXm_V_9nLPKu9C8KjLzpsW_K5ktPwxrPxjGP8GqyKJSQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Alvi, Jahan Zeb</creator><creator>Yu Jinghu</creator><creator>Yongqiang Feng</creator><creator>Asim, Muhammad</creator><creator>Wang Qian</creator><creator>Gang Pei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5110-7794</orcidid><orcidid>https://orcid.org/0000-0003-2145-4880</orcidid></search><sort><creationdate>20221101</creationdate><title>Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage</title><author>Alvi, Jahan Zeb ; Yu Jinghu ; Yongqiang Feng ; Asim, Muhammad ; Wang Qian ; Gang Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2fc8baa47bea004cbe75ccca6f0bded3ad8babe96a630de1b3dc6fad04138c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Comparative analysis</topic><topic>Efficiency</topic><topic>Energy storage</topic><topic>Equipment and supplies</topic><topic>Finite difference method</topic><topic>Flat plates</topic><topic>Heat</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat storage</topic><topic>Magnesium chloride</topic><topic>Molecular weight</topic><topic>Performance assessment</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Radiation</topic><topic>Rankine cycle</topic><topic>Solar energy</topic><topic>Storage tanks</topic><topic>Sustainability</topic><topic>Thermal energy</topic><topic>Thermal properties</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvi, Jahan Zeb</creatorcontrib><creatorcontrib>Yu Jinghu</creatorcontrib><creatorcontrib>Yongqiang Feng</creatorcontrib><creatorcontrib>Asim, Muhammad</creatorcontrib><creatorcontrib>Wang Qian</creatorcontrib><creatorcontrib>Gang Pei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvi, Jahan Zeb</au><au>Yu Jinghu</au><au>Yongqiang Feng</au><au>Asim, Muhammad</au><au>Wang Qian</au><au>Gang Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage</atitle><jtitle>Sustainability</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>15296</spage><pages>15296-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Phase change materials employed as thermal energy storage can aid in maximizing the use of stored solar energy. The current research examined the impact of three kinds of phase change materials (PCMs) on the dynamic performance of a solar organic Rankine cycle (ORC) system based on a direct vapor production. A number of evacuated flat plate collectors, a condenser, an expander, and an organic fluid pump make up this system. The thermodynamic cycle model of the direct vapor generation (DVG) solar ORC system was combined with the finite difference model of a phase change material heat storage tank created in MATLAB. The effect of PCMs (Organic, Inorganic and Eutectic PCMs) on the collector, ORC, and system efficiency, net power output, PCM temperature, and heat stored was studied weekly, monthly, and annually. Among the selected PCMs, Mg(NO3)2.6H2O had the highest system efficiency at 9.34%; KNO3-NaNO2 had the highest net power output at 33.80 kW; and MgCl2.6H2O stored the maximum energy of 20.18 MJ annually. Under the given operational and boundary conditions, the spring and fall were preferable to the summer and winter months for storing heat from phase change materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142215296</doi><orcidid>https://orcid.org/0000-0002-5110-7794</orcidid><orcidid>https://orcid.org/0000-0003-2145-4880</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-11, Vol.14 (22), p.15296 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2739476599 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Boundary conditions Comparative analysis Efficiency Energy storage Equipment and supplies Finite difference method Flat plates Heat Heat conductivity Heat exchangers Heat storage Magnesium chloride Molecular weight Performance assessment Phase change materials Phase transitions Radiation Rankine cycle Solar energy Storage tanks Sustainability Thermal energy Thermal properties Vapors |
title | Performance Assessment of Direct Vapor Generation Solar Organic Rankine Cycle System Coupled with Heat Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Assessment%20of%20Direct%20Vapor%20Generation%20Solar%20Organic%20Rankine%20Cycle%20System%20Coupled%20with%20Heat%20Storage&rft.jtitle=Sustainability&rft.au=Alvi,%20Jahan%20Zeb&rft.date=2022-11-01&rft.volume=14&rft.issue=22&rft.spage=15296&rft.pages=15296-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142215296&rft_dat=%3Cgale_proqu%3EA747187998%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739476599&rft_id=info:pmid/&rft_galeid=A747187998&rfr_iscdi=true |