Nonparametric estimation of past extropy under α-mixing dependence condition
Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In t...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2022-11, Vol.71 (2), p.723-734 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 2 |
container_start_page | 723 |
container_title | Ricerche di matematica |
container_volume | 71 |
creator | Irshad, M. R. Maya, R. |
description | Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit
α
-mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error. |
doi_str_mv | 10.1007/s11587-021-00570-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739453940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739453940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</originalsourceid><addsrcrecordid>eNp9kMtKQzEQhoMoWKsv4CrgOjo5OTHJUoo3qLrRdUhzKafY5JicQvtYvojPZOoR3MkwDAz_P5cPoXMKlxRAXBVKuRQEGkoAuAAiD9CEykYQ1ip6iCYAjBMOTB6jk1JWAK3g0E7Q03OKvclm7YfcWezL0K3N0KWIU8C9KQP22yGnfoc30fmMvz7Jutt2cYmd731tReuxTdF1e9MpOgrmvfiz3zpFb3e3r7MHMn-5f5zdzIllVA3EWAZOAudUCWtB1VgY09IF8GANXyjFjGMWnIPgnHQm0OsqF4K2wpgAbIouxrl9Th-berRepU2OdaVuBFMtr7lXNaPK5lRK9kH3uX6Xd5qC3mPTIzZdsekfbFpWExtNpYrj0ue_0f-4vgFu-nG-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739453940</pqid></control><display><type>article</type><title>Nonparametric estimation of past extropy under α-mixing dependence condition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Irshad, M. R. ; Maya, R.</creator><creatorcontrib>Irshad, M. R. ; Maya, R.</creatorcontrib><description>Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit
α
-mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-021-00570-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic properties ; Entropy ; Geometry ; Mathematics ; Mathematics and Statistics ; Nonparametric statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes ; Random variables</subject><ispartof>Ricerche di matematica, 2022-11, Vol.71 (2), p.723-734</ispartof><rights>Università degli Studi di Napoli "Federico II" 2021</rights><rights>Università degli Studi di Napoli "Federico II" 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</citedby><cites>FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-021-00570-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-021-00570-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Maya, R.</creatorcontrib><title>Nonparametric estimation of past extropy under α-mixing dependence condition</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit
α
-mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Entropy</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKQzEQhoMoWKsv4CrgOjo5OTHJUoo3qLrRdUhzKafY5JicQvtYvojPZOoR3MkwDAz_P5cPoXMKlxRAXBVKuRQEGkoAuAAiD9CEykYQ1ip6iCYAjBMOTB6jk1JWAK3g0E7Q03OKvclm7YfcWezL0K3N0KWIU8C9KQP22yGnfoc30fmMvz7Jutt2cYmd731tReuxTdF1e9MpOgrmvfiz3zpFb3e3r7MHMn-5f5zdzIllVA3EWAZOAudUCWtB1VgY09IF8GANXyjFjGMWnIPgnHQm0OsqF4K2wpgAbIouxrl9Th-berRepU2OdaVuBFMtr7lXNaPK5lRK9kH3uX6Xd5qC3mPTIzZdsekfbFpWExtNpYrj0ue_0f-4vgFu-nG-</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Irshad, M. R.</creator><creator>Maya, R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Nonparametric estimation of past extropy under α-mixing dependence condition</title><author>Irshad, M. R. ; Maya, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Entropy</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Maya, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irshad, M. R.</au><au>Maya, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of past extropy under α-mixing dependence condition</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>71</volume><issue>2</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit
α
-mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-021-00570-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2022-11, Vol.71 (2), p.723-734 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_proquest_journals_2739453940 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Asymptotic properties Entropy Geometry Mathematics Mathematics and Statistics Nonparametric statistics Numerical Analysis Probability Theory and Stochastic Processes Random variables |
title | Nonparametric estimation of past extropy under α-mixing dependence condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20past%20extropy%20under%20%CE%B1-mixing%20dependence%20condition&rft.jtitle=Ricerche%20di%20matematica&rft.au=Irshad,%20M.%20R.&rft.date=2022-11-01&rft.volume=71&rft.issue=2&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-021-00570-8&rft_dat=%3Cproquest_cross%3E2739453940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739453940&rft_id=info:pmid/&rfr_iscdi=true |