Nonparametric estimation of past extropy under α-mixing dependence condition

Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2022-11, Vol.71 (2), p.723-734
Hauptverfasser: Irshad, M. R., Maya, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 2
container_start_page 723
container_title Ricerche di matematica
container_volume 71
creator Irshad, M. R.
Maya, R.
description Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit α -mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.
doi_str_mv 10.1007/s11587-021-00570-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739453940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739453940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</originalsourceid><addsrcrecordid>eNp9kMtKQzEQhoMoWKsv4CrgOjo5OTHJUoo3qLrRdUhzKafY5JicQvtYvojPZOoR3MkwDAz_P5cPoXMKlxRAXBVKuRQEGkoAuAAiD9CEykYQ1ip6iCYAjBMOTB6jk1JWAK3g0E7Q03OKvclm7YfcWezL0K3N0KWIU8C9KQP22yGnfoc30fmMvz7Jutt2cYmd731tReuxTdF1e9MpOgrmvfiz3zpFb3e3r7MHMn-5f5zdzIllVA3EWAZOAudUCWtB1VgY09IF8GANXyjFjGMWnIPgnHQm0OsqF4K2wpgAbIouxrl9Th-berRepU2OdaVuBFMtr7lXNaPK5lRK9kH3uX6Xd5qC3mPTIzZdsekfbFpWExtNpYrj0ue_0f-4vgFu-nG-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739453940</pqid></control><display><type>article</type><title>Nonparametric estimation of past extropy under α-mixing dependence condition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Irshad, M. R. ; Maya, R.</creator><creatorcontrib>Irshad, M. R. ; Maya, R.</creatorcontrib><description>Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit α -mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-021-00570-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic properties ; Entropy ; Geometry ; Mathematics ; Mathematics and Statistics ; Nonparametric statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes ; Random variables</subject><ispartof>Ricerche di matematica, 2022-11, Vol.71 (2), p.723-734</ispartof><rights>Università degli Studi di Napoli "Federico II" 2021</rights><rights>Università degli Studi di Napoli "Federico II" 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</citedby><cites>FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-021-00570-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-021-00570-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Maya, R.</creatorcontrib><title>Nonparametric estimation of past extropy under α-mixing dependence condition</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit α -mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Entropy</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKQzEQhoMoWKsv4CrgOjo5OTHJUoo3qLrRdUhzKafY5JicQvtYvojPZOoR3MkwDAz_P5cPoXMKlxRAXBVKuRQEGkoAuAAiD9CEykYQ1ip6iCYAjBMOTB6jk1JWAK3g0E7Q03OKvclm7YfcWezL0K3N0KWIU8C9KQP22yGnfoc30fmMvz7Jutt2cYmd731tReuxTdF1e9MpOgrmvfiz3zpFb3e3r7MHMn-5f5zdzIllVA3EWAZOAudUCWtB1VgY09IF8GANXyjFjGMWnIPgnHQm0OsqF4K2wpgAbIouxrl9Th-berRepU2OdaVuBFMtr7lXNaPK5lRK9kH3uX6Xd5qC3mPTIzZdsekfbFpWExtNpYrj0ue_0f-4vgFu-nG-</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Irshad, M. R.</creator><creator>Maya, R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Nonparametric estimation of past extropy under α-mixing dependence condition</title><author>Irshad, M. R. ; Maya, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ac30d8055197cc09090baa41b05fca5b993ad3c0dd0fdd8daf1680577147aaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Entropy</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Maya, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irshad, M. R.</au><au>Maya, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of past extropy under α-mixing dependence condition</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>71</volume><issue>2</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>Di Crescenzo and Longobardi (J Appl Prob 39, 434–440, 2002), introduced the concept of past entropy for measuring uncertainty contained in past lifetime of random variables. By analogous to past entropy, Krishnan et al. (J Korean Stat Soc, 49, 457–474, 2020) defined the concept of past extropy. In this work, we propose nonparametric estimator for the past extropy, where the observations under consideration exhibit α -mixing dependence. Asymptotic properties of the proposed estimator are derived under suitable regularity conditions. A Monte–Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-021-00570-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2022-11, Vol.71 (2), p.723-734
issn 0035-5038
1827-3491
language eng
recordid cdi_proquest_journals_2739453940
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Asymptotic properties
Entropy
Geometry
Mathematics
Mathematics and Statistics
Nonparametric statistics
Numerical Analysis
Probability Theory and Stochastic Processes
Random variables
title Nonparametric estimation of past extropy under α-mixing dependence condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20past%20extropy%20under%20%CE%B1-mixing%20dependence%20condition&rft.jtitle=Ricerche%20di%20matematica&rft.au=Irshad,%20M.%20R.&rft.date=2022-11-01&rft.volume=71&rft.issue=2&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-021-00570-8&rft_dat=%3Cproquest_cross%3E2739453940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739453940&rft_id=info:pmid/&rfr_iscdi=true