Time Series Forecasting with Hypernetworks Generating Parameters in Advance

Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Lee, Jaehoon, Chan, Kim, Lee, Gyumin, Lim, Haksoo, Choi, Jeongwhan, Lee, Kookjin, Lee, Dongeun, Hong, Sanghyun, Park, Noseong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lee, Jaehoon
Chan, Kim
Lee, Gyumin
Lim, Haksoo
Choi, Jeongwhan
Lee, Kookjin
Lee, Dongeun
Hong, Sanghyun
Park, Noseong
description Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2739282018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739282018</sourcerecordid><originalsourceid>FETCH-proquest_journals_27392820183</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5DoOuhXmWaZcRmdBNkPcy7FSz3OxsJr19ET1AV__F949YAFLGUbYAmLDQuUYIAcsUkkQGbF_qFvkRSaPjuSWslfPaXPig_ZUXrw7JoB8s3RzfoUFSXz0oUi16JMe14evTU5kaZ2x8VneH4a9TNs-35aaIOrKPHp2vGtuT-VAFqVxBBiLO5H_XGzcQPXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739282018</pqid></control><display><type>article</type><title>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</title><source>Freely Accessible Journals_</source><creator>Lee, Jaehoon ; Chan, Kim ; Lee, Gyumin ; Lim, Haksoo ; Choi, Jeongwhan ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creator><creatorcontrib>Lee, Jaehoon ; Chan, Kim ; Lee, Gyumin ; Lim, Haksoo ; Choi, Jeongwhan ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creatorcontrib><description>Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Forecasting ; Mathematical models ; Parameters ; Time series ; Training</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Lee, Jaehoon</creatorcontrib><creatorcontrib>Chan, Kim</creatorcontrib><creatorcontrib>Lee, Gyumin</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Choi, Jeongwhan</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><title>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</title><title>arXiv.org</title><description>Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.</description><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Time series</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNytEKgjAUgOERBEn5DoOuhXmWaZcRmdBNkPcy7FSz3OxsJr19ET1AV__F949YAFLGUbYAmLDQuUYIAcsUkkQGbF_qFvkRSaPjuSWslfPaXPig_ZUXrw7JoB8s3RzfoUFSXz0oUi16JMe14evTU5kaZ2x8VneH4a9TNs-35aaIOrKPHp2vGtuT-VAFqVxBBiLO5H_XGzcQPXU</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>Lee, Jaehoon</creator><creator>Chan, Kim</creator><creator>Lee, Gyumin</creator><creator>Lim, Haksoo</creator><creator>Choi, Jeongwhan</creator><creator>Lee, Kookjin</creator><creator>Lee, Dongeun</creator><creator>Hong, Sanghyun</creator><creator>Park, Noseong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221122</creationdate><title>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</title><author>Lee, Jaehoon ; Chan, Kim ; Lee, Gyumin ; Lim, Haksoo ; Choi, Jeongwhan ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27392820183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Time series</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaehoon</creatorcontrib><creatorcontrib>Chan, Kim</creatorcontrib><creatorcontrib>Lee, Gyumin</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Choi, Jeongwhan</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaehoon</au><au>Chan, Kim</au><au>Lee, Gyumin</au><au>Lim, Haksoo</au><au>Choi, Jeongwhan</au><au>Lee, Kookjin</au><au>Lee, Dongeun</au><au>Hong, Sanghyun</au><au>Park, Noseong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</atitle><jtitle>arXiv.org</jtitle><date>2022-11-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2739282018
source Freely Accessible Journals_
subjects Forecasting
Mathematical models
Parameters
Time series
Training
title Time Series Forecasting with Hypernetworks Generating Parameters in Advance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Time%20Series%20Forecasting%20with%20Hypernetworks%20Generating%20Parameters%20in%20Advance&rft.jtitle=arXiv.org&rft.au=Lee,%20Jaehoon&rft.date=2022-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2739282018%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739282018&rft_id=info:pmid/&rfr_iscdi=true