Time Series Forecasting with Hypernetworks Generating Parameters in Advance
Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lee, Jaehoon Chan, Kim Lee, Gyumin Lim, Haksoo Choi, Jeongwhan Lee, Kookjin Lee, Dongeun Hong, Sanghyun Park, Noseong |
description | Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2739282018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739282018</sourcerecordid><originalsourceid>FETCH-proquest_journals_27392820183</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5DoOuhXmWaZcRmdBNkPcy7FSz3OxsJr19ET1AV__F949YAFLGUbYAmLDQuUYIAcsUkkQGbF_qFvkRSaPjuSWslfPaXPig_ZUXrw7JoB8s3RzfoUFSXz0oUi16JMe14evTU5kaZ2x8VneH4a9TNs-35aaIOrKPHp2vGtuT-VAFqVxBBiLO5H_XGzcQPXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739282018</pqid></control><display><type>article</type><title>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</title><source>Freely Accessible Journals_</source><creator>Lee, Jaehoon ; Chan, Kim ; Lee, Gyumin ; Lim, Haksoo ; Choi, Jeongwhan ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creator><creatorcontrib>Lee, Jaehoon ; Chan, Kim ; Lee, Gyumin ; Lim, Haksoo ; Choi, Jeongwhan ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</creatorcontrib><description>Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Forecasting ; Mathematical models ; Parameters ; Time series ; Training</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Lee, Jaehoon</creatorcontrib><creatorcontrib>Chan, Kim</creatorcontrib><creatorcontrib>Lee, Gyumin</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Choi, Jeongwhan</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><title>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</title><title>arXiv.org</title><description>Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.</description><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Time series</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNytEKgjAUgOERBEn5DoOuhXmWaZcRmdBNkPcy7FSz3OxsJr19ET1AV__F949YAFLGUbYAmLDQuUYIAcsUkkQGbF_qFvkRSaPjuSWslfPaXPig_ZUXrw7JoB8s3RzfoUFSXz0oUi16JMe14evTU5kaZ2x8VneH4a9TNs-35aaIOrKPHp2vGtuT-VAFqVxBBiLO5H_XGzcQPXU</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>Lee, Jaehoon</creator><creator>Chan, Kim</creator><creator>Lee, Gyumin</creator><creator>Lim, Haksoo</creator><creator>Choi, Jeongwhan</creator><creator>Lee, Kookjin</creator><creator>Lee, Dongeun</creator><creator>Hong, Sanghyun</creator><creator>Park, Noseong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221122</creationdate><title>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</title><author>Lee, Jaehoon ; Chan, Kim ; Lee, Gyumin ; Lim, Haksoo ; Choi, Jeongwhan ; Lee, Kookjin ; Lee, Dongeun ; Hong, Sanghyun ; Park, Noseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27392820183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Time series</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaehoon</creatorcontrib><creatorcontrib>Chan, Kim</creatorcontrib><creatorcontrib>Lee, Gyumin</creatorcontrib><creatorcontrib>Lim, Haksoo</creatorcontrib><creatorcontrib>Choi, Jeongwhan</creatorcontrib><creatorcontrib>Lee, Kookjin</creatorcontrib><creatorcontrib>Lee, Dongeun</creatorcontrib><creatorcontrib>Hong, Sanghyun</creatorcontrib><creatorcontrib>Park, Noseong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaehoon</au><au>Chan, Kim</au><au>Lee, Gyumin</au><au>Lim, Haksoo</au><au>Choi, Jeongwhan</au><au>Lee, Kookjin</au><au>Lee, Dongeun</au><au>Hong, Sanghyun</au><au>Park, Noseong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Time Series Forecasting with Hypernetworks Generating Parameters in Advance</atitle><jtitle>arXiv.org</jtitle><date>2022-11-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Forecasting future outcomes from recent time series data is not easy, especially when the future data are different from the past (i.e. time series are under temporal drifts). Existing approaches show limited performances under data drifts, and we identify the main reason: It takes time for a model to collect sufficient training data and adjust its parameters for complicated temporal patterns whenever the underlying dynamics change. To address this issue, we study a new approach; instead of adjusting model parameters (by continuously re-training a model on new data), we build a hypernetwork that generates other target models' parameters expected to perform well on the future data. Therefore, we can adjust the model parameters beforehand (if the hypernetwork is correct). We conduct extensive experiments with 6 target models, 6 baselines, and 4 datasets, and show that our HyperGPA outperforms other baselines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2739282018 |
source | Freely Accessible Journals_ |
subjects | Forecasting Mathematical models Parameters Time series Training |
title | Time Series Forecasting with Hypernetworks Generating Parameters in Advance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Time%20Series%20Forecasting%20with%20Hypernetworks%20Generating%20Parameters%20in%20Advance&rft.jtitle=arXiv.org&rft.au=Lee,%20Jaehoon&rft.date=2022-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2739282018%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739282018&rft_id=info:pmid/&rfr_iscdi=true |