Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform

Gait recognition is an efficient way of identifying people from their walking behavior, using inertial sensors integrated into the smartphones. These inertial sensors such as accelerometers and gyroscopes easily collect the gait data used by the existing deep learning-based gait recognition methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2022-12, Vol.28 (6), p.2307-2317
Hauptverfasser: Sezavar, Ahmadreza, Atta, Randa, Ghanbari, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2317
container_issue 6
container_start_page 2307
container_title Multimedia systems
container_volume 28
creator Sezavar, Ahmadreza
Atta, Randa
Ghanbari, Mohammad
description Gait recognition is an efficient way of identifying people from their walking behavior, using inertial sensors integrated into the smartphones. These inertial sensors such as accelerometers and gyroscopes easily collect the gait data used by the existing deep learning-based gait recognition methods. Although these methods specifically, the hybrid deep neural networks, provide good gait feature representation, their recognition accuracy needs to be improved as well as reducing their computational cost. In this paper, a person identification framework from smartphone-acquired inertial gait signals is proposed to overcome these limitations. It is based on the combination of convolutional neural network (CNN) and dual-tree complex wavelet transform (DTCWT), named as CNN–DTCWT. In the proposed framework, global average pooling layer and DTCWT layer are integrated into the CNN to provide robust and highly accurate inertial gait feature representation. Experimental results demonstrate the superiority of the proposed structure over the state-of-the-art models. Tested on three data sets, it achieves higher recognition performance than the state-of-the-art CNN-based, LSTM-based models, and hybrid networks within average recognition accuracy improvements of 1.7–14.95%
doi_str_mv 10.1007/s00530-022-00954-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739129802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739129802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a4cb119f9cddd15e6dc73b4daf49dcabe601dfd6982718e585d620e4f2b5d4f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmk3lkKcUXFFyo65CZ3KlTp0lNMq3-e6et4M7Vgct3DpePkEsO1xygvIkAeQYMhGAAKpdMHJEJl5lgvKrEMZmAkoJJVYhTchbjEoCXRQYTsnpZmZDW794hq01ESxemSzRg4xeuS513dIidW9DGu43vh93F9NThEPaRtj58RGqcpXYwPUsBcWRX6x6_6NZssMdEUzAutj6szslJa_qIF785JW_3d6-zRzZ_fnia3c5Zk3GVmDSyqTlXrWqstTzHwjZlVktrWqlsY2osgNvWFqoSJa8wr3JbCEDZijq3ss2m5Oqwuw7-c8CY9NIPYXw8alFmigtVgRgpcaCa4GMM2Op16EYd35qD3mnVB6161Kr3WvWulB1KcYTdAsPf9D-tH4UCfjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739129802</pqid></control><display><type>article</type><title>Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sezavar, Ahmadreza ; Atta, Randa ; Ghanbari, Mohammad</creator><creatorcontrib>Sezavar, Ahmadreza ; Atta, Randa ; Ghanbari, Mohammad ; IEEE Life Fellow</creatorcontrib><description>Gait recognition is an efficient way of identifying people from their walking behavior, using inertial sensors integrated into the smartphones. These inertial sensors such as accelerometers and gyroscopes easily collect the gait data used by the existing deep learning-based gait recognition methods. Although these methods specifically, the hybrid deep neural networks, provide good gait feature representation, their recognition accuracy needs to be improved as well as reducing their computational cost. In this paper, a person identification framework from smartphone-acquired inertial gait signals is proposed to overcome these limitations. It is based on the combination of convolutional neural network (CNN) and dual-tree complex wavelet transform (DTCWT), named as CNN–DTCWT. In the proposed framework, global average pooling layer and DTCWT layer are integrated into the CNN to provide robust and highly accurate inertial gait feature representation. Experimental results demonstrate the superiority of the proposed structure over the state-of-the-art models. Tested on three data sets, it achieves higher recognition performance than the state-of-the-art CNN-based, LSTM-based models, and hybrid networks within average recognition accuracy improvements of 1.7–14.95%</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-022-00954-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerometers ; Accuracy ; Artificial neural networks ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Feature recognition ; Gait recognition ; Inertial sensing devices ; Machine learning ; Multimedia Information Systems ; Neural networks ; Operating Systems ; Regular Article ; Representations ; Smartphones ; Wavelet transforms</subject><ispartof>Multimedia systems, 2022-12, Vol.28 (6), p.2307-2317</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a4cb119f9cddd15e6dc73b4daf49dcabe601dfd6982718e585d620e4f2b5d4f3</citedby><cites>FETCH-LOGICAL-c319t-4a4cb119f9cddd15e6dc73b4daf49dcabe601dfd6982718e585d620e4f2b5d4f3</cites><orcidid>0000-0001-8294-7780 ; 0000-0002-5482-8378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-022-00954-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-022-00954-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sezavar, Ahmadreza</creatorcontrib><creatorcontrib>Atta, Randa</creatorcontrib><creatorcontrib>Ghanbari, Mohammad</creatorcontrib><creatorcontrib>IEEE Life Fellow</creatorcontrib><title>Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Gait recognition is an efficient way of identifying people from their walking behavior, using inertial sensors integrated into the smartphones. These inertial sensors such as accelerometers and gyroscopes easily collect the gait data used by the existing deep learning-based gait recognition methods. Although these methods specifically, the hybrid deep neural networks, provide good gait feature representation, their recognition accuracy needs to be improved as well as reducing their computational cost. In this paper, a person identification framework from smartphone-acquired inertial gait signals is proposed to overcome these limitations. It is based on the combination of convolutional neural network (CNN) and dual-tree complex wavelet transform (DTCWT), named as CNN–DTCWT. In the proposed framework, global average pooling layer and DTCWT layer are integrated into the CNN to provide robust and highly accurate inertial gait feature representation. Experimental results demonstrate the superiority of the proposed structure over the state-of-the-art models. Tested on three data sets, it achieves higher recognition performance than the state-of-the-art CNN-based, LSTM-based models, and hybrid networks within average recognition accuracy improvements of 1.7–14.95%</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Feature recognition</subject><subject>Gait recognition</subject><subject>Inertial sensing devices</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Regular Article</subject><subject>Representations</subject><subject>Smartphones</subject><subject>Wavelet transforms</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmk3lkKcUXFFyo65CZ3KlTp0lNMq3-e6et4M7Vgct3DpePkEsO1xygvIkAeQYMhGAAKpdMHJEJl5lgvKrEMZmAkoJJVYhTchbjEoCXRQYTsnpZmZDW794hq01ESxemSzRg4xeuS513dIidW9DGu43vh93F9NThEPaRtj58RGqcpXYwPUsBcWRX6x6_6NZssMdEUzAutj6szslJa_qIF785JW_3d6-zRzZ_fnia3c5Zk3GVmDSyqTlXrWqstTzHwjZlVktrWqlsY2osgNvWFqoSJa8wr3JbCEDZijq3ss2m5Oqwuw7-c8CY9NIPYXw8alFmigtVgRgpcaCa4GMM2Op16EYd35qD3mnVB6161Kr3WvWulB1KcYTdAsPf9D-tH4UCfjo</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sezavar, Ahmadreza</creator><creator>Atta, Randa</creator><creator>Ghanbari, Mohammad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8294-7780</orcidid><orcidid>https://orcid.org/0000-0002-5482-8378</orcidid></search><sort><creationdate>20221201</creationdate><title>Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform</title><author>Sezavar, Ahmadreza ; Atta, Randa ; Ghanbari, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a4cb119f9cddd15e6dc73b4daf49dcabe601dfd6982718e585d620e4f2b5d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Feature recognition</topic><topic>Gait recognition</topic><topic>Inertial sensing devices</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Regular Article</topic><topic>Representations</topic><topic>Smartphones</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sezavar, Ahmadreza</creatorcontrib><creatorcontrib>Atta, Randa</creatorcontrib><creatorcontrib>Ghanbari, Mohammad</creatorcontrib><creatorcontrib>IEEE Life Fellow</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sezavar, Ahmadreza</au><au>Atta, Randa</au><au>Ghanbari, Mohammad</au><aucorp>IEEE Life Fellow</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>6</issue><spage>2307</spage><epage>2317</epage><pages>2307-2317</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Gait recognition is an efficient way of identifying people from their walking behavior, using inertial sensors integrated into the smartphones. These inertial sensors such as accelerometers and gyroscopes easily collect the gait data used by the existing deep learning-based gait recognition methods. Although these methods specifically, the hybrid deep neural networks, provide good gait feature representation, their recognition accuracy needs to be improved as well as reducing their computational cost. In this paper, a person identification framework from smartphone-acquired inertial gait signals is proposed to overcome these limitations. It is based on the combination of convolutional neural network (CNN) and dual-tree complex wavelet transform (DTCWT), named as CNN–DTCWT. In the proposed framework, global average pooling layer and DTCWT layer are integrated into the CNN to provide robust and highly accurate inertial gait feature representation. Experimental results demonstrate the superiority of the proposed structure over the state-of-the-art models. Tested on three data sets, it achieves higher recognition performance than the state-of-the-art CNN-based, LSTM-based models, and hybrid networks within average recognition accuracy improvements of 1.7–14.95%</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-022-00954-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8294-7780</orcidid><orcidid>https://orcid.org/0000-0002-5482-8378</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2022-12, Vol.28 (6), p.2307-2317
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2739129802
source SpringerLink Journals - AutoHoldings
subjects Accelerometers
Accuracy
Artificial neural networks
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Feature recognition
Gait recognition
Inertial sensing devices
Machine learning
Multimedia Information Systems
Neural networks
Operating Systems
Regular Article
Representations
Smartphones
Wavelet transforms
title Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smartphone-based%20gait%20recognition%20using%20convolutional%20neural%20networks%20and%20dual-tree%20complex%20wavelet%20transform&rft.jtitle=Multimedia%20systems&rft.au=Sezavar,%20Ahmadreza&rft.aucorp=IEEE%20Life%20Fellow&rft.date=2022-12-01&rft.volume=28&rft.issue=6&rft.spage=2307&rft.epage=2317&rft.pages=2307-2317&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-022-00954-2&rft_dat=%3Cproquest_cross%3E2739129802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739129802&rft_id=info:pmid/&rfr_iscdi=true