Magneto-optical trapping in a near-surface borehole
Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vovrosh, Jamie Wilkinson, Katie Hedges, Sam McGovern, Kieran Hayati, Farzad Carson, Christopher Selyem, Adam Winch, Jonathan Stray, Ben Earl, Luuk Maxwell Hamerow Wilson, Georgia Seedat, Adam Roshanmanesh, Sanaz Bongs, Kai Holynski, Michael |
description | Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (\(60\pm0.1\)) mm at its widest point and a length of (\(890\pm5\)) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate an in-borehole gravity surveys are performed. During the survey the system generated on average clouds of (3.0 \(\pm 0.1) \times 10^{5}\) \(^{87}\)Rb atoms with the standard deviation in atom number across the survey observed to be as low as \(9 \times 10^{4}\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2738697938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738697938</sourcerecordid><originalsourceid>FETCH-proquest_journals_27386979383</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScAzW3bdJZFBc393IttzUlJDE_76-DD-B0hu9sWCUBTkK3Uu5YndLaNI3slew6qBjccXGUvfAhmwktzxFDMG7hxnHkjjCKVOKME_Gnj_Tylg5sO6NNVP-6Z8fr5XG-iRD9u1DK4-pLdF8apQLdD2oADf9dHx-rNGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738697938</pqid></control><display><type>article</type><title>Magneto-optical trapping in a near-surface borehole</title><source>Free E- Journals</source><creator>Vovrosh, Jamie ; Wilkinson, Katie ; Hedges, Sam ; McGovern, Kieran ; Hayati, Farzad ; Carson, Christopher ; Selyem, Adam ; Winch, Jonathan ; Stray, Ben ; Earl, Luuk ; Maxwell Hamerow ; Wilson, Georgia ; Seedat, Adam ; Roshanmanesh, Sanaz ; Bongs, Kai ; Holynski, Michael</creator><creatorcontrib>Vovrosh, Jamie ; Wilkinson, Katie ; Hedges, Sam ; McGovern, Kieran ; Hayati, Farzad ; Carson, Christopher ; Selyem, Adam ; Winch, Jonathan ; Stray, Ben ; Earl, Luuk ; Maxwell Hamerow ; Wilson, Georgia ; Seedat, Adam ; Roshanmanesh, Sanaz ; Bongs, Kai ; Holynski, Michael</creatorcontrib><description>Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (\(60\pm0.1\)) mm at its widest point and a length of (\(890\pm5\)) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate an in-borehole gravity surveys are performed. During the survey the system generated on average clouds of (3.0 \(\pm 0.1) \times 10^{5}\) \(^{87}\)Rb atoms with the standard deviation in atom number across the survey observed to be as low as \(9 \times 10^{4}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atom interferometry ; Atomic properties ; Boreholes ; Cold atoms ; Optical trapping ; Optical traps ; Power consumption ; Sensors</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vovrosh, Jamie</creatorcontrib><creatorcontrib>Wilkinson, Katie</creatorcontrib><creatorcontrib>Hedges, Sam</creatorcontrib><creatorcontrib>McGovern, Kieran</creatorcontrib><creatorcontrib>Hayati, Farzad</creatorcontrib><creatorcontrib>Carson, Christopher</creatorcontrib><creatorcontrib>Selyem, Adam</creatorcontrib><creatorcontrib>Winch, Jonathan</creatorcontrib><creatorcontrib>Stray, Ben</creatorcontrib><creatorcontrib>Earl, Luuk</creatorcontrib><creatorcontrib>Maxwell Hamerow</creatorcontrib><creatorcontrib>Wilson, Georgia</creatorcontrib><creatorcontrib>Seedat, Adam</creatorcontrib><creatorcontrib>Roshanmanesh, Sanaz</creatorcontrib><creatorcontrib>Bongs, Kai</creatorcontrib><creatorcontrib>Holynski, Michael</creatorcontrib><title>Magneto-optical trapping in a near-surface borehole</title><title>arXiv.org</title><description>Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (\(60\pm0.1\)) mm at its widest point and a length of (\(890\pm5\)) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate an in-borehole gravity surveys are performed. During the survey the system generated on average clouds of (3.0 \(\pm 0.1) \times 10^{5}\) \(^{87}\)Rb atoms with the standard deviation in atom number across the survey observed to be as low as \(9 \times 10^{4}\).</description><subject>Atom interferometry</subject><subject>Atomic properties</subject><subject>Boreholes</subject><subject>Cold atoms</subject><subject>Optical trapping</subject><subject>Optical traps</subject><subject>Power consumption</subject><subject>Sensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScAzW3bdJZFBc393IttzUlJDE_76-DD-B0hu9sWCUBTkK3Uu5YndLaNI3slew6qBjccXGUvfAhmwktzxFDMG7hxnHkjjCKVOKME_Gnj_Tylg5sO6NNVP-6Z8fr5XG-iRD9u1DK4-pLdF8apQLdD2oADf9dHx-rNGE</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Vovrosh, Jamie</creator><creator>Wilkinson, Katie</creator><creator>Hedges, Sam</creator><creator>McGovern, Kieran</creator><creator>Hayati, Farzad</creator><creator>Carson, Christopher</creator><creator>Selyem, Adam</creator><creator>Winch, Jonathan</creator><creator>Stray, Ben</creator><creator>Earl, Luuk</creator><creator>Maxwell Hamerow</creator><creator>Wilson, Georgia</creator><creator>Seedat, Adam</creator><creator>Roshanmanesh, Sanaz</creator><creator>Bongs, Kai</creator><creator>Holynski, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221121</creationdate><title>Magneto-optical trapping in a near-surface borehole</title><author>Vovrosh, Jamie ; Wilkinson, Katie ; Hedges, Sam ; McGovern, Kieran ; Hayati, Farzad ; Carson, Christopher ; Selyem, Adam ; Winch, Jonathan ; Stray, Ben ; Earl, Luuk ; Maxwell Hamerow ; Wilson, Georgia ; Seedat, Adam ; Roshanmanesh, Sanaz ; Bongs, Kai ; Holynski, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27386979383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atom interferometry</topic><topic>Atomic properties</topic><topic>Boreholes</topic><topic>Cold atoms</topic><topic>Optical trapping</topic><topic>Optical traps</topic><topic>Power consumption</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Vovrosh, Jamie</creatorcontrib><creatorcontrib>Wilkinson, Katie</creatorcontrib><creatorcontrib>Hedges, Sam</creatorcontrib><creatorcontrib>McGovern, Kieran</creatorcontrib><creatorcontrib>Hayati, Farzad</creatorcontrib><creatorcontrib>Carson, Christopher</creatorcontrib><creatorcontrib>Selyem, Adam</creatorcontrib><creatorcontrib>Winch, Jonathan</creatorcontrib><creatorcontrib>Stray, Ben</creatorcontrib><creatorcontrib>Earl, Luuk</creatorcontrib><creatorcontrib>Maxwell Hamerow</creatorcontrib><creatorcontrib>Wilson, Georgia</creatorcontrib><creatorcontrib>Seedat, Adam</creatorcontrib><creatorcontrib>Roshanmanesh, Sanaz</creatorcontrib><creatorcontrib>Bongs, Kai</creatorcontrib><creatorcontrib>Holynski, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vovrosh, Jamie</au><au>Wilkinson, Katie</au><au>Hedges, Sam</au><au>McGovern, Kieran</au><au>Hayati, Farzad</au><au>Carson, Christopher</au><au>Selyem, Adam</au><au>Winch, Jonathan</au><au>Stray, Ben</au><au>Earl, Luuk</au><au>Maxwell Hamerow</au><au>Wilson, Georgia</au><au>Seedat, Adam</au><au>Roshanmanesh, Sanaz</au><au>Bongs, Kai</au><au>Holynski, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magneto-optical trapping in a near-surface borehole</atitle><jtitle>arXiv.org</jtitle><date>2022-11-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (\(60\pm0.1\)) mm at its widest point and a length of (\(890\pm5\)) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate an in-borehole gravity surveys are performed. During the survey the system generated on average clouds of (3.0 \(\pm 0.1) \times 10^{5}\) \(^{87}\)Rb atoms with the standard deviation in atom number across the survey observed to be as low as \(9 \times 10^{4}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2738697938 |
source | Free E- Journals |
subjects | Atom interferometry Atomic properties Boreholes Cold atoms Optical trapping Optical traps Power consumption Sensors |
title | Magneto-optical trapping in a near-surface borehole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magneto-optical%20trapping%20in%20a%20near-surface%20borehole&rft.jtitle=arXiv.org&rft.au=Vovrosh,%20Jamie&rft.date=2022-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2738697938%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738697938&rft_id=info:pmid/&rfr_iscdi=true |