Semi-uniform input-to-state stability of infinite-dimensional systems
We introduce the notions of semi-uniform input-to-state stability and its subclass, polynomial input-to-state stability, for infinite-dimensional systems. We establish a characterization of semi-uniform input-to-state stability based on attractivity properties as in the uniform case. Sufficient cond...
Gespeichert in:
Veröffentlicht in: | Mathematics of control, signals, and systems signals, and systems, 2022-12, Vol.34 (4), p.789-817 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 4 |
container_start_page | 789 |
container_title | Mathematics of control, signals, and systems |
container_volume | 34 |
creator | Wakaiki, Masashi |
description | We introduce the notions of semi-uniform input-to-state stability and its subclass, polynomial input-to-state stability, for infinite-dimensional systems. We establish a characterization of semi-uniform input-to-state stability based on attractivity properties as in the uniform case. Sufficient conditions for linear systems to be polynomially input-to-state stable are provided, which restrict the range of the input operator depending on the rate of polynomial decay of the product of the semigroup and the resolvent of its generator. We also show that a class of bilinear systems are polynomially integral input-to-state stable under a certain smoothness assumption on nonlinear operators. |
doi_str_mv | 10.1007/s00498-022-00326-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2738692945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738692945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-aae072496b6ee6486301628275f39428210e8ea96517bd76430e970b33131393</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkzyabo5RqhYIHe_AWsu2spHQ3Ncke-u2NruBNBmYG5r3H8CPklsE9A9APCUCahgLnFEBwRdkZmTEpalqr5v2czMAITiUz8pJcpbQHAKY0m5HlG_aejoPvQuwrPxzHTHOgKbuMVemtP_h8qkJXbp0ffEa68z0OyYfBHap0Shn7dE0uOndIePM752TztNwsVnT9-vyyeFzTrdQiU-cQNJdGtQpRyUaJ8gVvuK47YWRZGGCDzqia6XanlRSARkMrBCtlxJzcTbHHGD5HTNnuwxjLH8lyLRpluJF1UfFJtY0hpYidPUbfu3iyDOw3LTvRsoWW_aFlWTGJyZSKePjA-Bf9j-sLx-Jrsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738692945</pqid></control><display><type>article</type><title>Semi-uniform input-to-state stability of infinite-dimensional systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wakaiki, Masashi</creator><creatorcontrib>Wakaiki, Masashi</creatorcontrib><description>We introduce the notions of semi-uniform input-to-state stability and its subclass, polynomial input-to-state stability, for infinite-dimensional systems. We establish a characterization of semi-uniform input-to-state stability based on attractivity properties as in the uniform case. Sufficient conditions for linear systems to be polynomially input-to-state stable are provided, which restrict the range of the input operator depending on the rate of polynomial decay of the product of the semigroup and the resolvent of its generator. We also show that a class of bilinear systems are polynomially integral input-to-state stable under a certain smoothness assumption on nonlinear operators.</description><identifier>ISSN: 0932-4194</identifier><identifier>EISSN: 1435-568X</identifier><identifier>DOI: 10.1007/s00498-022-00326-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Communications Engineering ; Control ; Decay rate ; Dimensional stability ; Linear systems ; Mathematics ; Mathematics and Statistics ; Mechatronics ; Networks ; Operators (mathematics) ; Ordinary differential equations ; Original Article ; Partial differential equations ; Polynomials ; Robotics ; Smoothness ; System theory ; Systems Theory</subject><ispartof>Mathematics of control, signals, and systems, 2022-12, Vol.34 (4), p.789-817</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-aae072496b6ee6486301628275f39428210e8ea96517bd76430e970b33131393</citedby><cites>FETCH-LOGICAL-c473t-aae072496b6ee6486301628275f39428210e8ea96517bd76430e970b33131393</cites><orcidid>0000-0002-0905-6268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00498-022-00326-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00498-022-00326-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wakaiki, Masashi</creatorcontrib><title>Semi-uniform input-to-state stability of infinite-dimensional systems</title><title>Mathematics of control, signals, and systems</title><addtitle>Math. Control Signals Syst</addtitle><description>We introduce the notions of semi-uniform input-to-state stability and its subclass, polynomial input-to-state stability, for infinite-dimensional systems. We establish a characterization of semi-uniform input-to-state stability based on attractivity properties as in the uniform case. Sufficient conditions for linear systems to be polynomially input-to-state stable are provided, which restrict the range of the input operator depending on the rate of polynomial decay of the product of the semigroup and the resolvent of its generator. We also show that a class of bilinear systems are polynomially integral input-to-state stable under a certain smoothness assumption on nonlinear operators.</description><subject>Communications Engineering</subject><subject>Control</subject><subject>Decay rate</subject><subject>Dimensional stability</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechatronics</subject><subject>Networks</subject><subject>Operators (mathematics)</subject><subject>Ordinary differential equations</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Robotics</subject><subject>Smoothness</subject><subject>System theory</subject><subject>Systems Theory</subject><issn>0932-4194</issn><issn>1435-568X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkzyabo5RqhYIHe_AWsu2spHQ3Ncke-u2NruBNBmYG5r3H8CPklsE9A9APCUCahgLnFEBwRdkZmTEpalqr5v2czMAITiUz8pJcpbQHAKY0m5HlG_aejoPvQuwrPxzHTHOgKbuMVemtP_h8qkJXbp0ffEa68z0OyYfBHap0Shn7dE0uOndIePM752TztNwsVnT9-vyyeFzTrdQiU-cQNJdGtQpRyUaJ8gVvuK47YWRZGGCDzqia6XanlRSARkMrBCtlxJzcTbHHGD5HTNnuwxjLH8lyLRpluJF1UfFJtY0hpYidPUbfu3iyDOw3LTvRsoWW_aFlWTGJyZSKePjA-Bf9j-sLx-Jrsw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wakaiki, Masashi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0905-6268</orcidid></search><sort><creationdate>20221201</creationdate><title>Semi-uniform input-to-state stability of infinite-dimensional systems</title><author>Wakaiki, Masashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-aae072496b6ee6486301628275f39428210e8ea96517bd76430e970b33131393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communications Engineering</topic><topic>Control</topic><topic>Decay rate</topic><topic>Dimensional stability</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechatronics</topic><topic>Networks</topic><topic>Operators (mathematics)</topic><topic>Ordinary differential equations</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Robotics</topic><topic>Smoothness</topic><topic>System theory</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakaiki, Masashi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Mathematics of control, signals, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakaiki, Masashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-uniform input-to-state stability of infinite-dimensional systems</atitle><jtitle>Mathematics of control, signals, and systems</jtitle><stitle>Math. Control Signals Syst</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>789</spage><epage>817</epage><pages>789-817</pages><issn>0932-4194</issn><eissn>1435-568X</eissn><abstract>We introduce the notions of semi-uniform input-to-state stability and its subclass, polynomial input-to-state stability, for infinite-dimensional systems. We establish a characterization of semi-uniform input-to-state stability based on attractivity properties as in the uniform case. Sufficient conditions for linear systems to be polynomially input-to-state stable are provided, which restrict the range of the input operator depending on the rate of polynomial decay of the product of the semigroup and the resolvent of its generator. We also show that a class of bilinear systems are polynomially integral input-to-state stable under a certain smoothness assumption on nonlinear operators.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00498-022-00326-1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-0905-6268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-4194 |
ispartof | Mathematics of control, signals, and systems, 2022-12, Vol.34 (4), p.789-817 |
issn | 0932-4194 1435-568X |
language | eng |
recordid | cdi_proquest_journals_2738692945 |
source | SpringerLink Journals - AutoHoldings |
subjects | Communications Engineering Control Decay rate Dimensional stability Linear systems Mathematics Mathematics and Statistics Mechatronics Networks Operators (mathematics) Ordinary differential equations Original Article Partial differential equations Polynomials Robotics Smoothness System theory Systems Theory |
title | Semi-uniform input-to-state stability of infinite-dimensional systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-uniform%20input-to-state%20stability%20of%20infinite-dimensional%20systems&rft.jtitle=Mathematics%20of%20control,%20signals,%20and%20systems&rft.au=Wakaiki,%20Masashi&rft.date=2022-12-01&rft.volume=34&rft.issue=4&rft.spage=789&rft.epage=817&rft.pages=789-817&rft.issn=0932-4194&rft.eissn=1435-568X&rft_id=info:doi/10.1007/s00498-022-00326-1&rft_dat=%3Cproquest_cross%3E2738692945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738692945&rft_id=info:pmid/&rfr_iscdi=true |